Essential range

Last updated

In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is 'concentrated'.

Contents

Formal definition

Let be a measure space, and let be a topological space. For any -measurable , we say the essential range of to mean the set

[1] :Example 0.A.5 [2] [3]

Equivalently, , where is the pushforward measure onto of under and denotes the support of [4]

Essential values

We sometimes use the phrase "essential value of " to mean an element of the essential range of [5] :Exercise 4.1.6 [6] :Example 7.1.11

Special cases of common interest

Y = C

Say is equipped with its usual topology. Then the essential range of f is given by

[7] :Definition 4.36 [8] [9] :cf. Exercise 6.11

In other words: The essential range of a complex-valued function is the set of all complex numbers z such that the inverse image of each ε-neighbourhood of z under f has positive measure.

(Y,T) is discrete

Say is discrete, i.e., is the power set of i.e., the discrete topology on Then the essential range of f is the set of values y in Y with strictly positive -measure:

[10] :Example 1.1.29 [11] [12]

Properties

.

Examples

Extension

The notion of essential range can be extended to the case of , where is a separable metric space. If and are differentiable manifolds of the same dimension, if VMO and if , then . [13]

See also

Related Research Articles

Measure (mathematics) Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematics, fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics, decision-making, and clustering, are special cases of L-relations when L is the unit interval [0, 1].

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematical analysis, the Minkowski inequality establishes that the Lp spaces are normed vector spaces. Let S be a measure space, let 1 ≤ p < ∞ and let f and g be elements of Lp(S). Then f + g is in Lp(S), and we have the triangle inequality

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

Jensens inequality Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In mathematics, the support of a real-valued function is the subset of the domain containing the elements which are not mapped to zero. If the domain of is a topological space, the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis.

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory, and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory.

In mathematics, the total variation identifies several slightly different concepts, related to the structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

The spectrum of a linear operator that operates on a Banach space consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In mathematics, the concepts of essential infimum and essential supremum are related to the notions of infimum and supremum, but adapted to measure theory and functional analysis, where one often deals with statements that are not valid for all elements in a set, but rather almost everywhere, i.e., except on a set of measure zero.

This article discusses how information theory is related to measure theory.

In mathematics, the support of a measure μ on a measurable topological space is a precise notion of where in the space X the measure "lives". It is defined to be the largest (closed) subset of X for which every open neighbourhood of every point of the set has positive measure.

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

The Titchmarsh convolution theorem describes the properties of the support of the convolution of two functions. It was proven by Edward Charles Titchmarsh in 1926.

In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler.

Lebesgue integration Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the x-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of

References

  1. Zimmer, Robert J. (1990). Essential Results of Functional Analysis. University of Chicago Press. p. 2. ISBN   0-226-98337-4.
  2. Kuksin, Sergei; Shirikyan, Armen (2012). Mathematics of Two-Dimensional Turbulence. Cambridge University Press. p. 292. ISBN   978-1-107-02282-9.
  3. Kon, Mark A. (1985). Probability Distributions in Quantum Statistical Mechanics. Springer. pp. 74, 84. ISBN   3-540-15690-9.
  4. Driver, Bruce (May 7, 2012). Analysis Tools with Examples (PDF). p. 327. Cf. Exercise 30.5.1.
  5. Segal, Irving E.; Kunze, Ray A. (1978). Integrals and Operators (2nd revised and enlarged ed.). Springer. p. 106. ISBN   0-387-08323-5.
  6. Bogachev, Vladimir I.; Smolyanov, Oleg G. (2020). Real and Functional Analysis. Moscow Lectures. Springer. p. 283. ISBN   978-3-030-38219-3. ISSN   2522-0314.
  7. Weaver, Nik (2013). Measure Theory and Functional Analysis. World Scientific. p. 142. ISBN   978-981-4508-56-8.
  8. Bhatia, Rajendra (2009). Notes on Functional Analysis. Hindustan Book Agency. p. 149. ISBN   978-81-85931-89-0.
  9. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley. p. 187. ISBN   0-471-31716-0.
  10. Cf. Tao, Terence (2012). Topics in Random Matrix Theory. American Mathematical Society. p. 29. ISBN   978-0-8218-7430-1.
  11. Cf. Freedman, David (1971). Markov Chains. Holden-Day. p. 1.
  12. Cf. Chung, Kai Lai (1967). Markov Chains with Stationary Transition Probabilities. Springer. p. 135.
  13. Brezis, Haïm; Nirenberg, Louis (September 1995). "Degree theory and BMO. Part I: Compact manifolds without boundaries". Selecta Mathematica. 1 (2): 197–263. doi:10.1007/BF01671566.