FASER experiment

Last updated
Large Hadron Collider
(LHC)
LHC.svg
Plan of the LHC experiments and the preaccelerators.
LHC experiments
ATLAS A Toroidal LHC Apparatus
CMS Compact Muon Solenoid
LHCb LHC-beauty
ALICE A Large Ion Collider Experiment
TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation
LHCf LHC-forward
MoEDAL Monopole and Exotics Detector At the LHC
FASER ForwArd Search ExpeRiment
SND Scattering and Neutrino Detector
LHC preaccelerators
p and Pb Linear accelerators for protons (Linac 4) and lead (Linac 3)
(not marked) Proton Synchrotron Booster
PS Proton Synchrotron
SPS Super Proton Synchrotron

FASER (ForwArd Search ExpeRiment) is one of the nine particle physics experiments in 2022 at the Large Hadron Collider at CERN. It is designed to both search for new light and weakly coupled elementary particles, and to detect and study the interactions of high-energy collider neutrinos. [1] In 2023, FASER and SND@LHC reported the first observation of collider neutrinos. [2]

Contents

The experiment is installed in the service tunnel TI12, which is 480 m downstream from the interaction point used by the ATLAS experiment. [3] This tunnel was formerly used to inject the beam from the SPS into the LEP accelerator. In this location, the FASER experiment is placed into an intense and highly collimated beam of both neutrinos as well as possible new particles. Additionally, it is shielded from ATLAS by about 100 meters of rock and concrete, providing a low background environment. The FASER experiment was approved in 2019. [4] [5] The detector was built in the following two years and installed in 2021. [6] The experiment started taking data at the beginning of Run 3 of the LHC in summer 2022. [7] [8] [9]

New physics searches

The primary goal of the FASER experiment is to search for new light and weakly interacting particles, that have not been discovered yet, such as dark photons, axion-like particles and sterile neutrinos. [10] [11] If these particles are sufficiently light, they can be produced in rare decays of hadrons. Such particles will therefore be dominantly produced in the forward direction along the collision axis, forming a highly collimated beam, and can inherit a large fraction of the LHC proton beam energy. Additionally, due to their small couplings to the standard model particles and large boosts, these particles are long-lived and can easily travel hundreds of meters without interacting before they decay to standard model particles. These decays lead to a spectacular signal, the appearance of highly energetic particles, which FASER aims to detect.

In March 2023, the FASER Collaboration reported their first results on the search for dark photons. No signal consistent with a dark photon was seen in their 2022 data and limits on previously unconstrained parameter space were set.

Neutrino physics

Position of FASER experiment in side tunnel TI12 in the LHC at CERN FASER in LHC.jpg
Position of FASER experiment in side tunnel TI12 in the LHC at CERN

The LHC is the highest energy particle collider built so far, and therefore also the source of the most energetic neutrinos created in a controlled laboratory environment. Indeed, collisions at the LHC lead to a large flux of high-energy neutrinos of all flavours, which are highly collimated around the beam collision axis and stream through the FASER location.

In 2021, the FASER Collaboration announced the first detection of collider neutrino candidates. [12] [13] [14] [15] [16] The data used for this discovery was collected by a small emulsion pilot detector with a target mass of 11 kg. The detector was placed in the service tunnel TI18, and the data was collected for only four weeks during LHC Run 2 in 2018. While this outcome falls short of being a discovery of collider neutrinos, it highlights the potential and feasibility of conducting dedicated neutrino experiments at the LHC.

In 2023, the FASER Collaboration announced [17] [18] [19] and published [2] the first observation of collider neutrinos. For this, they searched for events in which a high momentum track emerges from the central part of the FASERv detector volume and no activity in the most upstream veto layers, as expected from a muon neutrino interaction. This search was performed using only the electronic detector components.

FASER experiment setup in the LHC at CERN FASER.jpg
FASER experiment setup in the LHC at CERN

To study these neutrino interactions in greater detail, FASER also contains the dedicated FASERv sub-detector (which is pronounced FASERnu). [20] [21] During its nominal run time of a few years, about 10000 neutrinos are expected to be recorded by FASERν. [22] These neutrinos typically have TeV scale energies, allowing FASERv to study their interactions in a regime where they are currently unconstrained.

FASERnu will be capable of exploring the following physics domains:

  1. FASERv will measure neutrino-nucleus interaction cross sections for all three neutrino flavours at the TeV energy scale. With the ability to identify the neutrino flavor, it will allow to test lepton flavour universality in neutrino scattering.
  2. FASERv will be able to see the highest number of tau neutrino interactions, allowing to study this elusive particle in greater detail.
  3. FASERv will carry out very precise measurements of muon neutrino interactions at an energy scale never explored before. These measurements will allow to probe the proton's structure and constrain parton distribution functions.
  4. Neutrinos at FASERv are primarily produced in the decay of pions, kaons and charmed hadrons. The measurement of the neutrino fluxes therefore allows to constrain the production of these particles in kinematic regime that is inaccessible for the other LHC experiments. This will provide new key inputs for astro-particle physics experiments.

Detector

Layout of the FASER detector FASER Detector Layout.png
Layout of the FASER detector

Located at the front end of FASER is the FASERν neutrino detector. It consists of many layers of emulsion films interleaved with tungsten plates as target material for neutrino interactions. Behind FASERν and at the entrance to the main detector is a charged particle veto consisting of plastic scintillators. [23] [24] This is followed by a 1.5 meter long empty decay volume and a 2 meter long spectrometer, which are placed in a 0.55 T magnetic field. The spectrometer consists of three tracking stations, composed of layers of precision silicon strip detectors, to detect charged particles produced in the decay of long-lived particles. Located at the end is an electromagnetic calorimeter.

Related Research Articles

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

<span class="mw-page-title-main">Top quark</span> Type of quark

The top quark, sometimes also referred to as the truth quark, is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.

<span class="mw-page-title-main">Large Hadron Collider</span> Particle accelerator at CERN, Switzerland

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories across more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">Large Electron–Positron Collider</span> Particle accelerator at CERN, Switzerland

The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland.

<span class="mw-page-title-main">LHCb experiment</span> Experiment at the Large Hadron Collider

The LHCb experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons. Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region. The LHCb collaboration, who built, operate and analyse data from the experiment, is composed of approximately 1260 people from 74 scientific institutes, representing 16 countries. Chris Parkes succeeded on July 1, 2020 as spokesperson for the collaboration from Giovanni Passaleva. The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just over the border from Geneva. The (small) MoEDAL experiment shares the same cavern.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

Leptoquarks are hypothetical particles that would interact with quarks and leptons. Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers. Their other quantum numbers, like spin, (fractional) electric charge and weak isospin vary among models. Leptoquarks are encountered in various extensions of the Standard Model, such as technicolor theories, theories of quark–lepton unification (e.g., Pati–Salam model), or GUTs based on SU(5), SO(10), E6, etc. Leptoquarks are currently searched for in experiments ATLAS and CMS at the Large Hadron Collider in CERN.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

The High Luminosity Large Hadron Collider is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning.

<span class="mw-page-title-main">LHCf experiment</span>

The LHCf is a special-purpose Large Hadron Collider experiment for astroparticle physics, and one of nine detectors in the LHC accelerator at CERN. LHCf is designed to study the particles generated in the forward region of collisions, those almost directly in line with the colliding proton beams.

<span class="mw-page-title-main">MoEDAL experiment</span>

MoEDAL is a particle physics experiment at the Large Hadron Collider (LHC).

<span class="mw-page-title-main">Search for the Higgs boson</span> Effort to prove the existence or non-existence of the Higgs boson

The search for the Higgs boson was a 40-year effort by physicists to prove the existence or non-existence of the Higgs boson, first theorised in the 1960s. The Higgs boson was the last unobserved fundamental particle in the Standard Model of particle physics, and its discovery was described as being the "ultimate verification" of the Standard Model. In March 2013, the Higgs boson was officially confirmed to exist.

<span class="mw-page-title-main">Future Circular Collider</span> Proposed post-LHC particle accelerator at CERN, Geneva, Switzerland

The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron-positron collisions, and FCC-eh, for electron-hadron collisions.

<span class="mw-page-title-main">David B. Cline</span> American particle physicist

]

<span class="mw-page-title-main">Kamal Benslama</span> Moroccan-Swiss Experimental Particle physicist

Kamal Benslama is a Moroccan-Swiss experimental particle physicist. He is a professor of physics at Drew University, a visiting experimental scientist at Fermilab, and a guest scientist at Brookhaven National Laboratory. He worked on the ATLAS experiment, at the Large Hadron Collider (LHC) at CERN in Switzerland, which is considered the largest experiment in the history of physical science. At present, he is member of the MU2E collaboration at Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago. Fermilab is a United States Department of Energy national laboratory specializing in high-energy particle physics.

<span class="mw-page-title-main">Fixed-target experiment</span>

A fixed-target experiment in particle physics is an experiment in which a beam of accelerated particles is collided with a stationary target. The moving beam consists of charged particles such as electrons or protons and is accelerated to relativistic speed. The fixed target can be a solid block or a liquid or a gaseous medium. These experiments are distinct from the collider-type experiments in which two moving particle beams are accelerated and collided. The famous Rutherford gold foil experiment, performed between 1908 and 1913, was one of the first fixed-target experiments, in which the alpha particles were targeted at a thin gold foil.

<span class="mw-page-title-main">Scattering and Neutrino Detector</span>

The Scattering and Neutrino Detector (SND) at the Large Hadron Collider (LHC), CERN, is an experiment built for the detection of the collider neutrinos. The primary goal of SND is to measure the p+p --> +X process and search for the feebly interacting particles. It will be operational from 2022, during the LHC-Run 3 (2022-2024). SND will be installed in an empty tunnel- TI18 that links the LHC and Super Proton Synchrotron, 480m away from the ATLAS experiment interaction point in the fast forward region and along the beam collision axis.

The Search for Hidden Particle (SHiP) is a fixed-target experiment at CERN's Super Proton Synchrotron (SPS) with the goal of searching for the interactions and measurements of the weakly interacting particles. In October 2013, the Expression of Interest letter for SHiP was submitted to the SPS Council (SPSC). Following which the Technical Proposal was submitted in April 2015, describing the experimental and detector facility. The Comprehensive Design Study was completed during 2016-19.

References

  1. "FASER detector at the Large Hadron Collider to seek clues about hidden matter in the universe". UW News. 2019-03-05. Retrieved 11 April 2021.
  2. 1 2 Worcester, Elizabeth (July 19, 2023). "The Dawn of Collider Neutrino Physics". Physics. 16: 113. Retrieved July 23, 2023.
  3. "LS2 Report: FASER is born". CERN. Retrieved 2021-03-25.
  4. "FASER: CERN approves new experiment to look for long-lived, exotic particles". CERN. Retrieved 2019-12-19.
  5. "FASER's new detector expected to catch first collider neutrino". CERN. Retrieved 2019-12-19.
  6. "FASER Detector Installation". EP News. Retrieved 2023-03-17.
  7. Garisto, Daniel. "Large Hadron Collider Seeks New Particles after Major Upgrade". Scientific American. Retrieved 2023-03-17.
  8. Liverpool, University of. "Large Hadron Collider takes first data in record-breaking run". phys.org. Retrieved 2023-03-17.
  9. "LHC Run 3: physics at record energy starts tomorrow". ATLAS. Retrieved 2023-03-17.
  10. Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian (2018-02-05). "FASER: ForwArd Search ExpeRiment at the LHC". Physical Review D. 97 (3): 035001. arXiv: 1708.09389 . doi:10.1103/PhysRevD.97.035001. ISSN   2470-0010. S2CID   119101090.
  11. Ariga et al. (FASER Collaboration) (2019-05-15). "FASER's Physics Reach for Long-Lived Particles". Physical Review D. 99 (9): 095011. arXiv: 1811.12522 . Bibcode:2019PhRvD..99i5011A. doi:10.1103/PhysRevD.99.095011. ISSN   2470-0010. S2CID   119103743.
  12. FASER Collaboration; Abreu, Henso; Afik, Yoav; Antel, Claire; Arakawa, Jason; Ariga, Akitaka; Ariga, Tomoko; Bernlochner, Florian; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte; Cerutti, Francesco (2021-11-24). "First neutrino interaction candidates at the LHC". Physical Review D. 104 (9): L091101. arXiv: 2105.06197 . doi: 10.1103/PhysRevD.104.L091101 .
  13. "Neutrinos were caught interacting at the Large Hadron Collider | Science News". 2021-05-26. Retrieved 2023-03-17.
  14. "UCI-led team of physicists detects signs of neutrinos at Large Hadron Collider". UCI News. 2021-11-24. Retrieved 2023-03-17.
  15. "Neutrinos detected in particle collider for first time at CERN". The Jerusalem Post | JPost.com. Retrieved 2023-03-17.
  16. Dorminey, Bruce. "Suitcase-Sized Neutrino Detector Hits Pay Dirt At Large Hadron Collider". Forbes. Retrieved 2021-11-26.
  17. "UC Irvine-led team is first to detect neutrinos made by a particle collider". UCI News. 2023-03-20. Retrieved 2023-03-20.
  18. "First detection of neutrinos made at a particle collider". ScienceDaily. Retrieved 2023-03-20.
  19. "DESY News: Res eaname rch team detects first neutrinos made by a particle collider". www.desy.de. Retrieved 2023-03-21.
  20. Abreu et al. (FASER collaboration) (2020). "Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC". The European Physical Journal C. 80 (1): 61. arXiv: 1908.02310 . Bibcode:2020EPJC...80...61A. doi:10.1140/epjc/s10052-020-7631-5. S2CID   199472668.
  21. Krishna, Chetna. "Catching neutrinos at the LHC". symmetry magazine. Retrieved 2023-03-17.
  22. Kling, Felix; Nevay, Laurence J. (2021-12-29). "Forward neutrino fluxes at the LHC". Physical Review D. 104 (11): 113008. arXiv: 2105.08270 . doi:10.1103/PhysRevD.104.113008.
  23. Ariga et al. (FASER Collaboration) (2018-11-26). "Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC". arXiv: 1811.10243 [physics.ins-det].
  24. Ariga et al. (FASER Collaboration) (2018-12-21). "Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC". arXiv: 1812.09139 [physics.ins-det].

46°14′09″N6°03′18″E / 46.23583°N 6.05500°E / 46.23583; 6.05500