Low Energy Antiproton Ring

Last updated
The Low Energy Antiproton Ring (LEAR) at CERN LEAR experiment.jpg
The Low Energy Antiproton Ring (LEAR) at CERN
Antimatter facilities
Low Energy Antiproton Ring (1982–1996)
Antiproton Accumulator Antiproton production
Antiproton Collector Decelerated and stored antiprotons
Antimatter Factory (2000–present)
Antiproton Decelerator (AD) Decelerates antiprotons
Extra Low Energy Antiproton ring (ELENA) Decelerates antiprotons received from AD

The Low Energy Anti-Proton Ring (LEAR) was a particle accelerator at CERN which operated from 1982 until 1996. [1] The ring was designed to decelerate and store antiprotons, to study the properties of antimatter and to create atoms of antihydrogen. [2] Antiprotons for the ring were created by the CERN Proton Synchrotron via the Antiproton Collector and the Antiproton Accumulator (AA). The creation of at least nine atoms of antihydrogen were confirmed by the PS210 experiment in 1995.

Contents

Experimental setup

LEAR is a multipurpose storage ring located in the South Hall of the Proton Synchrotron (PS), with a circumference of 78.5 m. [3] [4] Four straight sections are alternated with compact 90° bending magnets, along with eight quadrupole doublets. The straight sections each consist of an 8m long section, where equipment such as apparatus for internal beams and electron cooling can be stored, and two short sections of 1m. [4] The C-type (bending) magnets used are open to the outside of the ring for injection and ejection. [5] The vacuum system used for LEAR is designed for baking at 300 °C. [3]

Bunches of usually a few 109 antiprotons are skimmed off the AA and then decelerated by the PS from 3.5 GeV/c to 0.6 GeV/c. [5] [6] The bunch was transferred to LEAR where is could be decelerated to a minimum 100 MeV/c or accelerated to generally 1000 MeV/c. [5] For most experiments, a "beam stretcher mode" was used, where an ultra-slow extraction provided a high-duty (continuous) amount of antiprotons. [5] Another mode, "internal target", kept a beam circulating for hours, or even days, until most particles were consumed by a gas jet target. [7] [5]

LEAR bending magnet quadrant LEAR magnet.jpg
LEAR bending magnet quadrant

Stochastic cooling is implemented at several stages of the LEAR experimental setup, at different momenta. [5] The focus of stochastic cooling is to restrict the motion of particles in the beam and control their energies close to a certain value. From 1987, the setup included electron cooling, using the electron cooler from the Initial Cooling Experiment (ICE) to complement the stochastic cooling. [8] [9] Using cooling, high quality beams at low energies and low emittances could be produced. [5]

Results

There was a total of 27 experiments performed during LEAR's 14 years of running. [10] Several meson spectroscopy experiments were setup at LEAR to analyse the rare meson resonances produced in nucleon-antiproton annilhilation. [11] These included the Crystal Barrel, OBELIX and JETSET experiments. [10] Furthermore, matter-antimatter symmetry was investigated by studying specific proton-antiproton interactions, resulting in detailed measurements of CP violation. [12] The mass difference between the proton and antiproton was also studied at LEAR with an accuracy in 1 part in 1010. [13] [10]

Conversion to LEIR

In 1996, LEAR was converted into the Low Energy Ion Ring, which has since been used in the lead ion injection process for the Large Hadron Collider. [1] [14] Low energy antiproton research continues at CERN using the Antiproton Decelerator. It was built as a successor for LEAR and started operation in 2000. [15]

Related Research Articles

<span class="mw-page-title-main">Antimatter</span> Material composed of antiparticles of the corresponding particles of ordinary matter

In modern physics, antimatter is defined as matter composed of the antiparticles of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely-available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.

<span class="mw-page-title-main">CERN</span> Research centre in Switzerland

The European Organization for Nuclear Research, known as CERN, is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.

<span class="mw-page-title-main">Carlo Rubbia</span> Italian particle physicist and Nobel Prize winner (born 1934)

Carlo Rubbia is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN.

<span class="mw-page-title-main">Antihydrogen</span> Exotic particle made of an antiproton and positron

Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.

<span class="mw-page-title-main">Antiproton</span> Subatomic particle

The antiproton,
p
, is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.

<span class="mw-page-title-main">Simon van der Meer</span> Dutch physicist

Simon van der Meer was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z particles, the two fundamental communicators of the weak interaction.

<span class="mw-page-title-main">Protonium</span> Bound state of a proton and antiprotron

Protonium, also known as antiprotonic hydrogen, is a type of exotic atom in which a proton and an antiproton orbit each other. Since protonium is a bound system of a particle and its corresponding antiparticle, it is an example of a type of exotic atom called an onium.

<span class="mw-page-title-main">Intersecting Storage Rings</span> Particle accelerator at CERN, Switzerland

The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.

<span class="mw-page-title-main">Proton Synchrotron</span> CERNs first synchrotron accelerator

The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.

Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam.

<span class="mw-page-title-main">Antiproton Decelerator</span> Particle storage ring at CERN, Switzerland

The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments.

Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA), AD-3, is an experiment at the Antiproton Decelerator (AD) at CERN. The experiment was proposed in 1997, started collecting data in 2002 by using the antiprotons beams from the AD, and will continue in future under the AD and ELENA decelerator facility.

<span class="mw-page-title-main">Low Energy Ion Ring</span> Particle accelerator at CERN

The Low Energy Ion Ring (LEIR) is a particle accelerator at CERN used to accelerate ions from the LINAC 3 to the Proton Synchrotron (PS) to provide ions for collisions within the Large Hadron Collider (LHC).

<span class="mw-page-title-main">Antiproton Collector</span> CERN infrastructure

The Antiproton Collector (AC) was part of the antiparticle factory at CERN designed to decelerate and store antimatter, to study the properties of antimatter and to create atoms of antihydrogen. It was built in 1986 around the existing Antiproton Accumulator (AA) to improve the antiproton production by a factor of 10. Together, the Antiproton Collector and the Antiproton Accumulator formed the so-called Antiproton Accumulator Complex (AAC).

<span class="mw-page-title-main">Antiproton Accumulator</span> Part of the CERN proton-antiproton collider

The Antiproton Accumulator (AA) was an infrastructure connected to the Proton–Antiproton Collider – a modification of the Super Proton Synchrotron (SPS) – at CERN. The AA was built in 1979 and 1980, for the production and accumulation of antiprotons. In the SppS the antiprotons were made to collide with protons, achieving collisions at a center of mass energy of app. 540 GeV. Several experiments recorded data from the collisions, most notably the UA1 and UA2 experiment, where the W and Z bosons were discovered in 1983.

AEgIS, AD-6, is an experiment at the Antiproton Decelerator facility at CERN. Its primary goal is to measure directly the effect of Earth's gravitational field on antihydrogen atoms with significant precision. Indirect bounds that assume the validity of, for example, the universality of free fall, the Weak Equivalence Principle or CPT symmetry also in the case of antimatter constrain an anomalous gravitational behavior to a level where only precision measurements can provide answers. Vice versa, antimatter experiments with sufficient precision are essential to validate these fundamental assumptions. AEgIS was originally proposed in 2007. Construction of the main apparatus was completed in 2012. Since 2014, two laser systems with tunable wavelengths and synchronized to the nanosecond for specific atomic excitation have been successfully commissioned.

<span class="mw-page-title-main">Luigi Di Lella</span> Italian experimental particle physicist

Luigi Di Lella is an Italian experimental particle physicist. He has been a staff member at CERN for over 40 years, and has played an important role in major experiments at CERN such as CAST and UA2. From 1986 to 1990 he acted as spokesperson for the UA2 Collaboration, which, together with the UA1 Collaboration, discovered the W and Z bosons in 1983.

<span class="mw-page-title-main">Super Proton–Antiproton Synchrotron</span> Particle accelerator at CERN

The Super Proton–Antiproton Synchrotron was a particle accelerator that operated at CERN from 1981 to 1991. To operate as a proton-antiproton collider the Super Proton Synchrotron (SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983. Carlo Rubbia and Simon van der Meer received the 1984 Nobel Prize in Physics for their contributions to the SppS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SppS were UA4, UA5 and UA8.

Extra Low ENergy Antiproton ring (ELENA) is a 30 m hexagonal storage ring that decelerates antiproton beams and delivers it to different AD experiments. It is situated inside the Antiproton Decelerator (AD) complex at CERN, Geneva. It is designed to further decelerate the antiproton beam coming from the Antiproton decelerator to an energy of 0.1 MeV for more precise measurements. The first beam circulated ELENA on 18 November 2016. The ring is expected to be fully operational by the end of the Long Shutdown 2 (LS2) in 2021.

<span class="mw-page-title-main">UA6 experiment</span>

The Underground Area 6 (UA6), also referred to as PHOTONS, experiment was a high-energy physics experiment at the Proton-Antiproton Collider, a modification of the Super Proton Synchrotron (SPS), at CERN. The experiment ran from 1984 to 1990, with the purpose of studying inclusive electromagnetic final states and lambda production in proton-antiproton and proton-proton interactions. Towards the end of its run it focused more on direct-photon and J/ψ production. The experiment is complementary to the UA1, UA2 and CDF experiments.

References

  1. 1 2 "The Low Energy Antiproton Ring". CERN. Retrieved 2021-08-17.
  2. "The History of Antimatter - The Accelerator Era". 2001-02-22. Archived from the original on 2001-02-22. Retrieved 2021-08-17.
  3. 1 2 Plass, Gunther (16 May 1980). "Design study of a facility for experiments with low energy antiprotons (LEAR)" (PDF). Cern/Ps/Dl 80-7.
  4. 1 2 Lefèvre, P.; Möhl, D.; Plass, G. (1980), Newman, W. S. (ed.), "The CERN Low Energy Antiproton Ring (LEAR) Project", 11th International Conference on High-Energy Accelerators: Geneva, Switzerland, July 7–11, 1980, Experientia Supplementum, Basel: Birkhäuser, vol. 40, pp. 819–824, doi:10.1007/978-3-0348-5540-2_119, ISBN   978-3-0348-5540-2 , retrieved 2023-08-07
  5. 1 2 3 4 5 6 7 Koziol, H.; Möhl, D. (2004-12-01). "The CERN low-energy antiproton programme: the synchrotrons". Physics Reports. 403–404: 271–280. doi:10.1016/j.physrep.2004.09.003. ISSN   0370-1573.
  6. Klapisch, R (1983-01-01). "The LEAR Project and Physics with Low Energy Antiprotons at CERN (A Summary)". Physica Scripta. T5: 140–142. doi:10.1088/0031-8949/1983/T5/023. ISSN   0031-8949. S2CID   250785310.
  7. Kilian, K.; Möhl, D.; Gspann, J.; Poth, H. (1984), Gastaldi, Ugo; Klapisch, Robert (eds.), "Internal Targets for LEAR", Physics at LEAR with Low-Energy Cooled Antiprotons, Ettore Majorana International Science Series, Boston, MA: Springer New York, pp. 677–690, doi:10.1007/978-1-4684-8727-5_64, ISBN   978-1-4684-8727-5 , retrieved 2023-08-07
  8. Poth, H.; Schwab, W.; Seligmann, B.; Wörtge, M.; Wolf, A.; Baird, S.; Bosser, J.; Chanel, M.; Haseroth, H.; Hill, C. E.; Ley, R.; Manglunki, D.; Möhl, D.; Tranquille, G.; Vallet, J. L. (1990-02-01). "Further results and evaluation of electron cooling experiments at LEAR". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 287 (1): 328–332. doi:10.1016/0168-9002(90)91818-V. ISSN   0168-9002.
  9. Krienen, F. (1980), Newman, W. S. (ed.), "Initial Cooling Experiments (ICE) at CERN", 11th International Conference on High-Energy Accelerators: Geneva, Switzerland, July 7–11, 1980, Experientia Supplementum, Basel: Birkhäuser, vol. 40, pp. 781–793, doi:10.1007/978-3-0348-5540-2_115, ISBN   978-3-0348-5540-2 , retrieved 2023-08-07
  10. 1 2 3 Bloch, Philippe (11 Jun 2012). "LEAR'S PHYSICS LEGACY". CERN Bulletin.
  11. Gianotti, P. (2005). "From LEAR to HESR: past, present and future of meson spectroscopy with antiprotons". AIP Conference Proceedings. AIP. 768: 204–208. doi:10.1063/1.1932911.
  12. Kounnas, C.; Lahanas, A. B.; Pavlopoulos, P. (1983-08-04). "Limitations on CP-violating effects in strange particle decays". Physics Letters B. 127 (5): 381–383. doi:10.1016/0370-2693(83)91022-5. ISSN   0370-2693.
  13. Gabrielse, G.; Fei, X.; Orozco, L.; Tjoelker, R.; Haas, J.; Kalinowsky, H.; Trainor, T.; Kells, W. (Sep 1990). "Thousandfold improvement in the measured antiproton mass". Physical Review Letters. 65 (11): 1317–1320. doi:10.1103/PhysRevLett.65.1317. ISSN   0031-9007. PMID   10042233.
  14. Katarina Anthony (2012). "LEAR: a machine ahead of its time". CERN Bulletin.
  15. "The Antiproton Decelerator". CERN. Retrieved 2021-08-17.