Gauss's law for gravity

Last updated

In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law. [1]

Contents

The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law. This is because both Newton's law and Coulomb's law describe inverse-square interaction in a 3-dimensional space.

Qualitative statement of the law

The gravitational field g (also called gravitational acceleration) is a vector field – a vector at each point of space (and time). It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.

Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field.

Gauss's law for gravity states:

The gravitational flux through any closed surface is proportional to the enclosed mass.

Integral form

The integral form of Gauss's law for gravity states:

OiintLaTeX.svg

where

The left-hand side of this equation is called the flux of the gravitational field. Note that according to the law it is always negative (or zero), and never positive. This can be contrasted with Gauss's law for electricity, where the flux can be either positive or negative. The difference is because charge can be either positive or negative, while mass can only be positive.

Differential form

The differential form of Gauss's law for gravity states

where denotes divergence, G is the universal gravitational constant, and ρ is the mass density at each point.

Relation to the integral form

The two forms of Gauss's law for gravity are mathematically equivalent. The divergence theorem states:

where V is a closed region bounded by a simple closed oriented surface ∂V and dV is an infinitesimal piece of the volume V (see volume integral for more details). The gravitational field g must be a continuously differentiable vector field defined on a neighborhood of V.

Given also that

we can apply the divergence theorem to the integral form of Gauss's law for gravity, which becomes:

which can be rewritten:

This has to hold simultaneously for every possible volume V; the only way this can happen is if the integrands are equal. Hence we arrive at

which is the differential form of Gauss's law for gravity.

It is possible to derive the integral form from the differential form using the reverse of this method.

Although the two forms are equivalent, one or the other might be more convenient to use in a particular computation.

Relation to Newton's law

Deriving Gauss's law from Newton's law

Gauss's law for gravity can be derived from Newton's law of universal gravitation, which states that the gravitational field due to a point mass is:

where

A proof using vector calculus is shown in the box below. It is mathematically identical to the proof of Gauss's law (in electrostatics) starting from Coulomb's law. [2]

Outline of proof

g(r), the gravitational field at r, can be calculated by adding up the contribution to g(r) due to every bit of mass in the universe (see superposition principle). To do this, we integrate over every point s in space, adding up the contribution to g(r) associated with the mass (if any) at s, where this contribution is calculated by Newton's law. The result is:

(d3s stands for dsxdsydsz, each of which is integrated from −∞ to +∞.) If we take the divergence of both sides of this equation with respect to r, and use the known theorem [2]

where δ(r) is the Dirac delta function, the result is

Using the "sifting property" of the Dirac delta function, we arrive at

which is the differential form of Gauss's law for gravity, as desired.

Deriving Newton's law from Gauss's law and irrotationality

It is impossible to mathematically prove Newton's law from Gauss's law alone, because Gauss's law specifies the divergence of g but does not contain any information regarding the curl of g (see Helmholtz decomposition). In addition to Gauss's law, the assumption is used that g is irrotational (has zero curl), as gravity is a conservative force:

Even these are not enough: Boundary conditions on g are also necessary to prove Newton's law, such as the assumption that the field is zero infinitely far from a mass.

The proof of Newton's law from these assumptions is as follows:

Outline of proof

Start with the integral form of Gauss's law:

Apply this law to the situation where the volume V is a sphere of radius r centered on a point-mass M. It's reasonable to expect the gravitational field from a point mass to be spherically symmetric. (We omit the proof for simplicity.) By making this assumption, g takes the following form:

(i.e., the direction of g is antiparallel to the direction of r, and the magnitude of g depends only on the magnitude, not direction, of r). Plugging this in, and using the fact that ∂V is a spherical surface with constant r and area ,

which is Newton's law.

Poisson's equation and gravitational potential

Since the gravitational field has zero curl (equivalently, gravity is a conservative force) as mentioned above, it can be written as the gradient of a scalar potential, called the gravitational potential:

Then the differential form of Gauss's law for gravity becomes Poisson's equation:

This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing g via Poisson's equation is mathematically equivalent to computing g directly from Gauss's law, one or the other approach may be an easier computation in a given situation.

In radially symmetric systems, the gravitational potential is a function of only one variable (namely, ), and Poisson's equation becomes (see Del in cylindrical and spherical coordinates):

while the gravitational field is:

When solving the equation it should be taken into account that in the case of finite densities ∂ϕ/∂r has to be continuous at boundaries (discontinuities of the density), and zero for r = 0.

Applications

Gauss's law can be used to easily derive the gravitational field in certain cases where a direct application of Newton's law would be more difficult (but not impossible). See the article Gaussian surface for more details on how these derivations are done. Three such applications are as follows:

Bouguer plate

We can conclude (by using a "Gaussian pillbox") that for an infinite, flat plate (Bouguer plate) of any finite thickness, the gravitational field outside the plate is perpendicular to the plate, towards it, with magnitude 2πG times the mass per unit area, independent of the distance to the plate [3] (see also gravity anomalies).

More generally, for a mass distribution with the density depending on one Cartesian coordinate z only, gravity for any z is 2πG times the difference in mass per unit area on either side of this z value.

In particular, a parallel combination of two parallel infinite plates of equal mass per unit area produces no gravitational field between them.

Cylindrically symmetric mass distribution

In the case of an infinite uniform (in z) cylindrically symmetric mass distribution we can conclude (by using a cylindrical Gaussian surface) that the field strength at a distance r from the center is inward with a magnitude of 2G/r times the total mass per unit length at a smaller distance (from the axis), regardless of any masses at a larger distance.

For example, inside an infinite uniform hollow cylinder, the field is zero.

Spherically symmetric mass distribution

In the case of a spherically symmetric mass distribution we can conclude (by using a spherical Gaussian surface) that the field strength at a distance r from the center is inward with a magnitude of G/r2 times only the total mass within a smaller distance than r. All the mass at a greater distance than r from the center has no resultant effect.

For example, a hollow sphere does not produce any net gravity inside. The gravitational field inside is the same as if the hollow sphere were not there (i.e. the resultant field is that of all masses not including the sphere, which can be inside and outside the sphere).

Although this follows in one or two lines of algebra from Gauss's law for gravity, it took Isaac Newton several pages of cumbersome calculus to derive it directly using his law of gravity; see the article shell theorem for this direct derivation.

Derivation from Lagrangian

The Lagrangian density for Newtonian gravity is

Applying Hamilton's principle to this Lagrangian, the result is Gauss's law for gravity:

See Lagrangian (field theory) for details.

See also

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Electric potential</span> Line integral of the electric field

Electric potential is defined as the amount of work energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

<span class="mw-page-title-main">Gauss's law</span> Foundational law of electromagnetism relating electric field and charge distributions

In physics, Gauss's law, also known as Gauss's flux theorem, is one of Maxwell's equations. It relates the distribution of electric charge to the resulting electric field.

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.

<span class="mw-page-title-main">Gravitational field</span> Model in physics

In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s2).

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

<span class="mw-page-title-main">Magnetic vector potential</span> Integral of the magnetic field

In classical electromagnetism, magnetic vector potential is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

<span class="mw-page-title-main">Gaussian surface</span> Closed surface in three-dimensional space

A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. It is an arbitrary closed surface S = ∂V used in conjunction with Gauss's law for the corresponding field by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of gravitational mass as the source of the gravitational field or amount of electric charge as the source of the electrostatic field, or vice versa: calculate the fields for the source distribution.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

In physics and engineering, mass flux is the rate of mass flow per unit of area. Its SI units are kg m−2 s−1. The common symbols are j, J, q, Q, φ, or Φ, sometimes with subscript m to indicate mass is the flowing quantity. Mass flux can also refer to an alternate form of flux in Fick's law that includes the molecular mass, or in Darcy's law that includes the mass density.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. "Gauss's law and gravity".
  2. 1 2 See, for example, Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p.  50. ISBN   0-13-805326-X.
  3. The mechanics problem solver, by Fogiel, pp 535–536

Further reading