Hadamard space

Last updated
In an Hadamard space, a triangle is hyperbolic; that is, the middle one in the picture. In fact, any complete metric space where a triangle is hyperbolic is an Hadamard space. End of universe.jpg
In an Hadamard space, a triangle is hyperbolic; that is, the middle one in the picture. In fact, any complete metric space where a triangle is hyperbolic is an Hadamard space.

In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces.

A Hadamard space is defined to be a nonempty [1] complete metric space such that, given any points and there exists a point such that for every point

The point is then the midpoint of and

In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality. A flat Hadamard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a normed space is an Hadamard space if and only if it is a Hilbert space.

The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of rigidity theorems. In a Hadamard space, any two points can be joined by a unique geodesic between them; in particular, it is contractible. Quite generally, if is a bounded subset of a metric space, then the center of the closed ball of the minimum radius containing it is called the circumcenter of [2] Every bounded subset of a Hadamard space is contained in the smallest closed ball (which is the same as the closure of its convex hull). If is the group of isometries of a Hadamard space leaving invariant then fixes the circumcenter of (Bruhat–Tits fixed point theorem).

The basic result for a non-positively curved manifold is the Cartan–Hadamard theorem. The analog holds for a Hadamard space: a complete, connected metric space which is locally isometric to a Hadamard space has an Hadamard space as its universal cover. Its variant applies for non-positively curved orbifolds. (cf. Lurie.)

Examples of Hadamard spaces are Hilbert spaces, the Poincaré disc, complete metric trees (for example, complete Bruhat–Tits building), -space with and and Hadamard manifolds, that is, complete simply-connected Riemannian manifolds of nonpositive sectional curvature. Important examples of Hadamard manifolds are simply connected nonpositively curved symmetric spaces.

Applications of Hadamard spaces are not restricted to geometry. In 1998, Dmitri Burago and Serge Ferleger [3] used CAT(0) geometry to solve a problem in dynamical billiards: in a gas of hard balls, is there a uniform bound on the number of collisions? The solution begins by constructing a configuration space for the dynamical system, obtained by joining together copies of corresponding billiard table, which turns out to be an Hadamard space.

See also

Related Research Articles

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

<span class="mw-page-title-main">Riemannian geometry</span> Branch of differential geometry

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

<span class="mw-page-title-main">Pseudo-Riemannian manifold</span> Differentiable manifold with nondegenerate metric tensor

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

Hyperbolic space Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry. In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry, with those axioms of congruence that involve the concept of the angle dropped, and `triangle inequality', regarded as an axiom, added.

In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds. They are named after Herbert Busemann, who introduced them; he gave an extensive treatment of the topic in his 1955 book "The geometry of geodesics".

In topology, a branch of mathematics, an aspherical space is a topological space with all homotopy groups equal to 0 when .

In mathematics, the Cartan–Hadamard theorem is a statement in Riemannian geometry concerning the structure of complete Riemannian manifolds of non-positive sectional curvature. The theorem states that the universal cover of such a manifold is diffeomorphic to a Euclidean space via the exponential map at any point. It was first proved by Hans Carl Friedrich von Mangoldt for surfaces in 1881, and independently by Jacques Hadamard in 1898. Élie Cartan generalized the theorem to Riemannian manifolds in 1928. The theorem was further generalized to a wide class of metric spaces by Mikhail Gromov in 1987; detailed proofs were published by Ballmann (1990) for metric spaces of non-positive curvature and by Alexander & Bishop (1990) for general locally convex metric spaces.

In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°.

In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard.

In metric geometry, the Reshetnyak gluing theorem gives information on the structure of a geometric object built by using as building blocks other geometric objects, belonging to a well defined class. Intuitively, it states that a manifold obtained by joining together, in a precisely defined way, other manifolds having a given property inherit that very same property.

In mathematics, the Cartan–Hadamard conjecture is a fundamental problem in Riemannian geometry and Geometric measure theory which states that the classical isoperimetric inequality may be generalized to spaces of nonpositive sectional curvature, known as Cartan–Hadamard manifolds. The conjecture, which is named after French mathematicians Élie Cartan and Jacques Hadamard, may be traced back to work of André Weil in 1926.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

References

  1. The assumption on "nonempty" has meaning: a fixed point theorem often states the set of fixed point is an Hadamard space. The main content of such an assertion is that the set is nonempty.
  2. A Course in Metric Geometry, p. 334.
  3. Burago D., Ferleger S. Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. of Math. 147 (1998), 695-708