Hunt effect (color)

Last updated
In this illustration of the Hunt effect, the four horizontal bands contain the same colors (hue and saturation), yet the brighter bands appear more colorful than the darker ones. Hunt Effect - the appearance of colourfulness increases with luminance.png
In this illustration of the Hunt effect, the four horizontal bands contain the same colors (hue and saturation), yet the brighter bands appear more colorful than the darker ones.

The Hunt effect or Luminance-on-colorfulness effect [1] comprises an increase in colorfulness of a color with increasing luminance. The effect was first described by RWG Hunt in 1952. [2]

Hunt noted that this effect occurs at low luminance levels. At higher luminance, he noted a hue shift of colors to be more blue with higher luminance, which is now known as the Bezold–Brücke effect. The Hunt effect is related to the Helmholtz–Kohlrausch effect, where a partially desaturated stimulus is seen to be brighter than fully saturated or achromatic stimuli.

See also

Related Research Articles

<span class="mw-page-title-main">Light pollution</span> Excess artificial light in an environment

Light pollution is the presence of unwanted, inappropriate, or excessive artificial lighting. In a descriptive sense, the term light pollution refers to the effects of any poorly implemented lighting, during the day or night. Light pollution can be understood not only as a phenomenon resulting from a specific source or kind of pollution, but also as a contributor to the wider, collective impact of various sources of pollution.

<span class="mw-page-title-main">Kruithof curve</span> Region of color temperatures that are often viewed as pleasing to an observer

The Kruithof curve describes a region of illuminance levels and color temperatures that are often viewed as comfortable or pleasing to an observer. The curve was constructed from psychophysical data collected by Dutch physicist Arie Andries Kruithof, though the original experimental data is not present on the curve itself. Lighting conditions within the bounded region were empirically assessed as being pleasing or natural, whereas conditions outside the region were considered uncomfortable, displeasing or unnatural. The Kruithof curve is a sufficient model for describing pleasing sources that are considered natural or closely resemble Planckian black bodies, but its value in describing human preference has been consistently questioned by further studies on interior lighting.

<span class="mw-page-title-main">Sexual dimorphism</span> Condition where males and females exhibit different characteristics

Sexual dimorphism is the condition where sexes of the same species exhibit different morphological characteristics, particularly characteristics not directly involved in reproduction. The condition occurs in most animals and some plants. Differences may include secondary sex characteristics, size, weight, color, markings, or behavioral or cognitive traits. Male–male reproductive competition has evolved a diverse array of sexually dimorphic traits. Aggressive utility traits such as “battle” teeth and blunt heads reinforced as battering rams are used as weapons in aggressive interactions between rivals. Passive displays such as ornamental feathering or song-calling have also evolved mainly through sexual selection. These differences may be subtle or exaggerated and may be subjected to sexual selection and natural selection. The opposite of dimorphism is monomorphism, when both biological sexes are phenotypically indistinguishable from each other.

<span class="mw-page-title-main">Skyglow</span> Diffuse luminance of the night sky

Skyglow is the diffuse luminance of the night sky, apart from discrete light sources such as the Moon and visible individual stars. It is a commonly noticed aspect of light pollution. While usually referring to luminance arising from artificial lighting, skyglow may also involve any scattered light seen at night, including natural ones like starlight, zodiacal light, and airglow.

<span class="mw-page-title-main">Purkinje effect</span> Tendency for sight to shift toward blue colors at low light levels

The Purkinje effect or Purkinje phenomenon is the tendency for the peak luminance sensitivity of the eye to shift toward the blue end of the color spectrum at low illumination levels as part of dark adaptation. In consequence, reds will appear darker relative to other colors as light levels decrease. The effect is named after the Czech anatomist Jan Evangelista Purkyně. While the effect is often described from the perspective of the human eye, it is well established in a number of animals under the same name to describe the general shifting of spectral sensitivity due to pooling of rod and cone output signals as a part of dark/light adaptation.

In the study of human visual perception, scotopic vision is the vision of the eye under low-light conditions. The term comes from Greek skotos, meaning "darkness", and -opia, meaning "a condition of sight". In the human eye, cone cells are nonfunctional in low visible light. Scotopic vision is produced exclusively through rod cells, which are most sensitive to wavelengths of around 498 nm (blue-green) and are insensitive to wavelengths longer than about 640 nm (red-orange). This condition is called the Purkinje effect.

<span class="mw-page-title-main">Abney effect</span> Perceived hue shift when white light is added to a monochromatic light source

The Abney effect or the purity-on-hue effect describes the perceived hue shift that occurs when white light is added to a monochromatic light source.

The Bezold–Brücke shift or luminance-on-hue effect is a change in hue perception as light intensity changes. As intensity increases, spectral colors shift more towards blue or yellow. At lower intensities, the red/green axis dominates. This means that reds become more yellow with increasing brightness. Light may change in the perceived hue as its brightness changes, despite the fact that it retains a constant spectral composition. It was discovered by Wilhelm von Bezold and M.E. Brücke.

The Stiles–Crawford effect is a property of the human eye that refers to the directional sensitivity of the cone photoreceptors.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

<span class="mw-page-title-main">CIECAM02</span>

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

Contrast in visual perception is a felt difference in appearance of two or more parts of a field seen simultaneously or successively.

<span class="mw-page-title-main">Evolution of color vision in primates</span> Loss and regain of colour vision during the evolution of primates

The evolution of color vision in primates is highly unusual compared to most eutherian mammals. A remote vertebrate ancestor of primates possessed tetrachromacy, but nocturnal, warm-blooded, mammalian ancestors lost two of four cones in the retina at the time of dinosaurs. Most teleost fish, reptiles and birds are therefore tetrachromatic while most mammals are strictly dichromats, the exceptions being some primates and marsupials, who are trichromats, and many marine mammals, who are monochromats.

<span class="mw-page-title-main">Bird vision</span> Senses for birds

Vision is the most important sense for birds, since good eyesight is essential for safe flight. Birds have a number of adaptations which give visual acuity superior to that of other vertebrate groups; a pigeon has been described as "two eyes with wings". Birds are theropod dinosaurs, and the avian eye resembles that of other reptiles, with ciliary muscles that can change the shape of the lens rapidly and to a greater extent than in the mammals. Birds have the largest eyes relative to their size in the animal kingdom, and movement is consequently limited within the eye's bony socket. In addition to the two eyelids usually found in vertebrates, bird's eyes are protected by a third transparent movable membrane. The eye's internal anatomy is similar to that of other vertebrates, but has a structure, the pecten oculi, unique to birds.

<span class="mw-page-title-main">Chromostereopsis</span> Visual illusion whereby the impression of depth is conveyed in two-dimensional color images

Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images. Such illusions have been reported for over a century and have generally been attributed to some form of chromatic aberration.

<span class="mw-page-title-main">Helmholtz–Kohlrausch effect</span>

The Helmholtz–Kohlrausch effect is a perceptual phenomenon wherein the intense saturation of spectral hue is perceived as part of the color's luminance. This brightness increase by saturation, which grows stronger as saturation increases, might better be called chromatic luminance, since "white" or achromatic luminance is the standard of comparison. It appears in both self-luminous and surface colors, although it is most pronounced in spectral lights.

<span class="mw-page-title-main">Sexism in academia</span> Discrimination in higher education

Sexism in academia refers to the discrimination and subordination of a particular sex or gender academic institutions, particularly universities, due to the ideologies, practices, and reinforcements that privilege one sex or gender over another. Sexism in academia is not limited to but primarily affects women who are denied the professional achievements awarded to men in their respective fields such as positions, tenure and awards. Sexism in academia encompasses institutionalized and cultural sexist ideologies; it is not limited to the admission process and the under-representation of women in the sciences but also includes the lack of women represented in college course materials and the denial of tenure, positions and awards that are generally accorded to men.

A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.

Data visualization achieves its significance today due to information technology: big data processed in computers with capable visualization software, combined with statistical techniques and color coding on electronic displays. This article is about color coding in data visualization.

The Hunt Effect refers to two unrelated effects:

References

  1. Pridmore, Ralph W.; Melgosa, Manuel (10 April 2015). "All Effects of Psychophysical Variables on Color Attributes: A Classification System". PLOS ONE. 10 (4): e0119024. Bibcode:2015PLoSO..1019024P. doi: 10.1371/journal.pone.0119024 . PMC   4393130 . PMID   25859845.
  2. Hunt, R. W. G. (1 March 1952). "Light and Dark Adaptation and the Perception of Color*". Journal of the Optical Society of America. 42 (3): 190–199. doi:10.1364/JOSA.42.000190. PMID   14908745.