Light-harvesting complex

Last updated

A light-harvesting complex consists of a number of chromophores [1] which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. The light which is captured by the chromophores is capable of exciting molecules from their ground state to a higher energy state, known as the excited state. [2] This excited state does not last very long and is known to be short-lived. [3]

Contents

Light-harvesting complexes are found in a wide variety among the different photosynthetic species, with no homology among the major groups. [4] The complexes consist of proteins and photosynthetic pigments and surround a photosynthetic reaction center to focus energy, attained from photons absorbed by the pigment, toward the reaction center using Förster resonance energy transfer.

Function

Photosynthesis is a process where light is absorbed or harvested by pigment protein complexes which are able to turn sunlight into energy. [5] Absorption of a photon by a molecule takes place when pigment protein complexes harvest sunlight leading to electronic excitation delivered to the reaction centre where the process of charge separation can take place. [6] when the energy of the captured photon matches that of an electronic transition. The fate of such excitation can be a return to the ground state or another electronic state of the same molecule. When the excited molecule has a nearby neighbour molecule, the excitation energy may also be transferred, through electromagnetic interactions, from one molecule to another. This process is called resonance energy transfer, and the rate depends strongly on the distance between the energy donor and energy acceptor molecules. Before an excited molecule can transition back to its ground state, energy needs to be harvested. This excitation is transferred among chromophores where it is delivered to the reaction centre. [7] Light-harvesting complexes have their pigments specifically positioned to optimize these rates.

In purple bacteria

Purple bacteria is a type of photosynthetic organism with a light harvesting complex consisting of two pigment protein complexes referred to as LH1 and LH2. [8] Within the photosynthetic membrane, these two complexes differ in terms of their arrangement. [9] The LH1 complexes surround the reaction centre, while the LH2 complexes are arranged around the LH1 complexes and the reaction centre in a peripheral fashion. [10] Purple bacteria use bacteriochlorophyll and carotenoids to gather light energy. These proteins are arranged in a ring-like fashion creating a cylinder that spans the membrane. [11] [12]

In green bacteria

The main light harvesting complex in Green bacteria is known as the chlorosome. [13] The chlorosome is equipped with rod-like BChl c aggregates with protein embedded lipids surrounding it. [14] Chlorosomes are found outside of the membrane which covers the reaction centre. [15] Green sulphur bacteria and some Chloroflexia use ellipsoidal complexes known as the chlorosome to capture light. Their form of bacteriochlorophyll is green.

In cyanobacteria and plants

Chlorophylls and carotenoids are important in light-harvesting complexes present in plants. Chlorophyll b is almost identical to chlorophyll a, except it has a formyl group in place of a methyl group. This small difference makes chlorophyll b absorb light with wavelengths between 400 and 500 nm more efficiently. Carotenoids are long linear organic molecules that have alternating single and double bonds along their length. Such molecules are called polyenes. Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers.

The carotenoid molecules also serve a safeguarding function. Carotenoid molecules suppress damaging photochemical reactions, in particular those including oxygen, which exposure to sunlight can cause. Plants that lack carotenoid molecules quickly die upon exposure to oxygen and light.

Phycobilisome

Schematic layout of protein subunits in a phycobilisome. Phycobilisome structure.jpg
Schematic layout of protein subunits in a phycobilisome.

The antenna-shaped light harvesting complex of cyanobacteria, glaucocystophyta, and red algae is known as the phycobilisome which is composed of linear tetrapyrrole pigments. Pigment-protein complexes referred to as R-phycoerythrin are rod-like in shape and make up the rods and core of the phycobilisome. [16] Little light reaches algae that reside at a depth of one meter or more in seawater, as light is absorbed by seawater. The pigments, such as phycocyanobilin and phycoerythrobilin, are the chromophores that bind through a covalent thioether bond to their apoproteins at cystein residues. The apoprotein with its chromophore is called phycocyanin, phycoerythrin, and allophycocyanin, respectively. They often occur as hexamers of α and β subunits (α3β3)2. They enhance the amount and spectral window of light absorption and fill the "green gap", which occurs in higher plants. [17]

The geometrical arrangement of a phycobilisome is very elegant and results in 95% efficiency of energy transfer. There is a central core of allophycocyanin, which sits above a photosynthetic reaction center. There are phycocyanin and phycoerythrin subunits that radiate out from this center like thin tubes. This increases the surface area of the absorbing section and helps focus and concentrate light energy down into the reaction center to form chlorophyll. The energy transfer from excited electrons absorbed by pigments in the phycoerythrin subunits at the periphery of these antennas appears at the reaction center in less than 100 ps. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their activities. Photosynthetic organisms use intracellular organic compounds to store the chemical energy they produce in photosynthesis within organic compounds like sugars, glycogen, cellulose and starches. Photosynthesis is usually used to refer to oxygenic photosynthesis, a process that produces oxygen. To use this stored chemical energy, the organisms' cells metabolize the organic compounds through another process called cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

Phycoerythrin (PE) is a red protein-pigment complex from the light-harvesting phycobiliprotein family, present in cyanobacteria, red algae and cryptophytes, accessory to the main chlorophyll pigments responsible for photosynthesis.The red pigment is due to the prosthetic group, phycoerythrobilin, which gives phycoerythrin its red color.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

<span class="mw-page-title-main">Photosystem I</span> Second protein complex in photosynthetic light reactions

Photosystem I is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. The photon energy absorbed by Photosystem I also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II.

<span class="mw-page-title-main">Purple bacteria</span> Group of phototrophic bacteria

Purple bacteria or purple photosynthetic bacteria are Gram-negative proteobacteria that are phototrophic, capable of producing their own food via photosynthesis. They are pigmented with bacteriochlorophyll a or b, together with various carotenoids, which give them colours ranging between purple, red, brown, and orange. They may be divided into two groups – purple sulfur bacteria and purple non-sulfur bacteria. Purple bacteria are anoxygenic phototrophs widely spread in nature, but especially in aquatic environments, where there are anoxic conditions that favor the synthesis of their pigments.

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule.

<span class="mw-page-title-main">Photosynthetic reaction centre</span> Molecular unit responsible for absorbing light in photosynthesis

A photosynthetic reaction center is a complex of several proteins, pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or transferred as excitation energy via light-harvesting antenna systems, give rise to electron transfer reactions along the path of a series of protein-bound co-factors. These co-factors are light-absorbing molecules (also named chromophores or pigments) such as chlorophyll and pheophytin, as well as quinones. The energy of the photon is used to excite an electron of a pigment. The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H2O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.

<span class="mw-page-title-main">Chlorosome</span>

A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and many green non-sulfur bacteria (GNsB), together known as green bacteria. They differ from other antenna complexes by their large size and lack of protein matrix supporting the photosynthetic pigments. Green sulfur bacteria are a group of organisms that generally live in extremely low-light environments, such as at depths of 100 metres in the Black Sea. The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day. To achieve this, the bacteria contain chlorosome structures, which contain up to 250,000 chlorophyll molecules. Chlorosomes are ellipsoidal bodies, in GSB their length varies from 100 to 200 nm, width of 50-100 nm and height of 15 – 30 nm, in GNsB the chlorosomes are somewhat smaller.

Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

<span class="mw-page-title-main">Retinalophototroph</span>

A retinalophototroph is one of two different types of phototrophs, and are named for retinal-binding proteins they utilize for cell signaling and converting light into energy. Like all phototrophs, retinalophototrophs absorb photons to initiate their cellular processes. In contrast with chlorophototrophs, retinalophototrophs do not use chlorophyll or an electron transport chain to power their chemical reactions. This means retinalophototrophs are incapable of traditional carbon fixation, a fundamental photosynthetic process that transforms inorganic carbon into organic compounds. For this reason, experts consider them to be less efficient than their chlorophyll-using counterparts, chlorophototrophs.

Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.

<span class="mw-page-title-main">Antenna complex in purple bacteria</span>

The antenna complex in purple photosynthetic bacteria are protein complexes responsible for the transfer of solar energy to the photosynthetic reaction centre. Purple bacteria, particularly Rhodopseudomonas acidophila of purple non-sulfur bacteria, have been one of the main groups of organisms used to study bacterial antenna complexes so much is known about this group's photosynthetic components. It is one of the many independent types of light-harvesting complex used by various photosynthetic organisms.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

<span class="mw-page-title-main">Orange carotenoid protein</span>

Orange carotenoid protein (OCP) is a water-soluble protein which plays a role in photoprotection in diverse cyanobacteria. It is the only photoactive protein known to use a carotenoid as the photoresponsive chromophore. The protein consists of two domains, with a single keto-carotenoid molecule non-covalently bound between the two domains. It is a very efficient quencher of excitation energy absorbed by the primary light-harvesting antenna complexes of cyanobacteria, the phycobilisomes. The quenching is induced by blue-green light. It is also capable of preventing oxidative damage by directly scavenging singlet oxygen (1O2).

<span class="mw-page-title-main">Peridinin-chlorophyll-protein complex</span>

The peridinin-chlorophyll-protein complex is a soluble molecular complex consisting of the peridinin-chlorophyll a-protein bound to peridinin, chlorophyll, and lipids. The peridinin molecules absorb light in the blue-green wavelengths and transfer energy to the chlorophyll molecules with extremely high efficiency. PCP complexes are found in many photosynthetic dinoflagellates, in which they may be the primary light-harvesting complexes.

Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.

Alexander Glazer was a professor of the Graduate School in the Department of Molecular and Cell Biology at the University of California, Berkeley. He had a passion for protein chemistry and structure function relationships. He also had a longstanding interest in light-harvesting complexes in cyanobacteria and red algae called phycobilisomes. He had also spent more than 10 years working on the human genome project where he has investigated methods for DNA detection and sequencing which most notably includes the development of fluorescent reagents involved in cell labeling. Most recently, he had focused his studies on issues in environmental sciences. He died on July 18, 2021, in Orinda, California

Professor Richard Cogdell is plant molecular biologist and holds the Hooker Chair of Botany at the University of Glasgow. Cogdell is the director of Glasgow Biomedical Research Centre, with a principal research interest in the structure and function of purple bacterial photosynthetic membrane proteins. Cogdell has authored over 250 peer-reviewed journal articles, and was a member of the Council of the BBSRC from 2014 to 2018.

Spheroidene is a carotenoid pigment. It is a component of the photosynthetic reaction center of certain purple bacteria of the Rhodospirillaceae family, including Rhodobacter sphaeroides and Rhodopseudomonas sphaeroides. Like other carotenoids, it is a tetraterpenoid. In purified form, it is a brick-red solid soluble in benzene.

References

  1. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  2. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  3. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  4. Kühlbrandt, Werner (June 1995). "Structure and function of bacterial light-harvesting complexes". Structure. 3 (6): 521–525. doi: 10.1016/S0969-2126(01)00184-8 .
  5. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  6. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  7. Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D. (2014-03-06). "Photosynthetic light harvesting: excitons and coherence". Journal of the Royal Society Interface. 11 (92): 20130901. doi:10.1098/rsif.2013.0901. PMC   3899860 . PMID   24352671.
  8. Ramos, Felipe Cardoso; Nottoli, Michele; Cupellini, Lorenzo; Mennucci, Benedetta (2019-10-30). "The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling". Chemical Science. 10 (42): 9650–9662. doi: 10.1039/C9SC02886B . ISSN   2041-6539. PMC   6988754 . PMID   32055335.
  9. Ramos, Felipe Cardoso; Nottoli, Michele; Cupellini, Lorenzo; Mennucci, Benedetta (2019-10-30). "The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling". Chemical Science. 10 (42): 9650–9662. doi: 10.1039/C9SC02886B . ISSN   2041-6539. PMC   6988754 . PMID   32055335.
  10. Ramos, Felipe Cardoso; Nottoli, Michele; Cupellini, Lorenzo; Mennucci, Benedetta (2019-10-30). "The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling". Chemical Science. 10 (42): 9650–9662. doi: 10.1039/C9SC02886B . ISSN   2041-6539. PMC   6988754 . PMID   32055335.
  11. Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F, Zuber H (1992). "The primary structure of the antenna polypeptides of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. Four core-type antenna polypeptides in E. halochloris and E. halophila". Eur. J. Biochem. 205 (3): 917–925. doi: 10.1111/j.1432-1033.1992.tb16858.x . PMID   1577009.
  12. Brunisholz RA, Zuber H (1992). "Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae". J. Photochem. Photobiol. B. 15 (1): 113–140. doi:10.1016/1011-1344(92)87010-7. PMID   1460542.
  13. Hu, Xiche; Damjanović, Ana; Ritz, Thorsten; Schulten, Klaus (1998-05-26). "Architecture and mechanism of the light-harvesting apparatus of purple bacteria". Proceedings of the National Academy of Sciences. 95 (11): 5935–5941. Bibcode:1998PNAS...95.5935H. doi: 10.1073/pnas.95.11.5935 . ISSN   0027-8424. PMC   34498 . PMID   9600895.
  14. Hu, Xiche; Damjanović, Ana; Ritz, Thorsten; Schulten, Klaus (1998-05-26). "Architecture and mechanism of the light-harvesting apparatus of purple bacteria". Proceedings of the National Academy of Sciences. 95 (11): 5935–5941. Bibcode:1998PNAS...95.5935H. doi: 10.1073/pnas.95.11.5935 . ISSN   0027-8424. PMC   34498 . PMID   9600895.
  15. Hu, Xiche; Damjanović, Ana; Ritz, Thorsten; Schulten, Klaus (1998-05-26). "Architecture and mechanism of the light-harvesting apparatus of purple bacteria". Proceedings of the National Academy of Sciences. 95 (11): 5935–5941. Bibcode:1998PNAS...95.5935H. doi: 10.1073/pnas.95.11.5935 . ISSN   0027-8424. PMC   34498 . PMID   9600895.
  16. Hu, Xiche; Damjanović, Ana; Ritz, Thorsten; Schulten, Klaus (1998-05-26). "Architecture and mechanism of the light-harvesting apparatus of purple bacteria". Proceedings of the National Academy of Sciences. 95 (11): 5935–5941. Bibcode:1998PNAS...95.5935H. doi: 10.1073/pnas.95.11.5935 . ISSN   0027-8424. PMC   34498 . PMID   9600895.
  17. Singh, NK; Sonani, RR; Rastogi, RP; Madamwar, D (2015). "The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria". EXCLI Journal. 14: 268–89. doi:10.17179/excli2014-723. PMC   4553884 . PMID   26417362.
  18. Light Harvesting by Phycobilisomes Annual Review of Biophysics and Biophysical Chemistry Vol. 14: 47-77 (Volume publication date June 1985)

Further reading