PGO waves

Last updated

Ponto-geniculo-occipital waves or PGO waves are distinctive wave forms of propagating activity between three key brain regions: the pons, lateral geniculate nucleus, and occipital lobe; specifically, they are phasic field potentials. [1] These waves can be recorded from any of these three structures during and immediately before REM sleep. [2] The waves begin as electrical pulses from the pons, then move to the lateral geniculate nucleus residing in the thalamus, and end in the primary visual cortex of the occipital lobe. The appearances of these waves are most prominent in the period right before REM sleep, albeit they have been recorded during wakefulness as well. [1] They are theorized to be intricately involved with eye movement of both wake and sleep cycles in many different animals.

Contents

Discovery

The discovery of PGO waves goes back to 1959, when three French scientists released their scientific article of their study of these waves in animal test subjects. [3] Although at this time, they did not have a specific name for this neurological phenomenon.

It was not until the published work of Brooks and Bizzi that these waves became known as PGO waves. [4] Their research focused on the propagation of these waves in cats, noticing that these field potentials started in the pons, propagating down to the lateral geniculate nucleus and the occipital lobe.

Other studies with these waves have been done on rats as well. Scientists tried to discern whether the rats had PGO waves, but learned that they are present only in the pons, and wave propagation does not excite any neurons in the lateral geniculate nucleus. [5] As a result of this study, PGO waves are known as P waves in rodents.

PGO waves have been studied mostly through cat and rodent animal models. Despite the focus of the research, PGO waves have been found to exist in other mammalian species including humans and nonhuman primates, such as the macaque and baboon. [6]

Detection

In the original experiments, PGO waves (or P waves in rodent models) are found by placing electrodes inside the brain, next to either the pons, lateral geniculate nuclei, or occipital lobe. Along with electroencephalography (EEG) recording techniques, scientists are also able to show the correlation between other brain waves associated with REM sleep and PGO waves.

Although scientists know they exist, PGO waves have not been detected in healthy humans due to the ethical concerns about accessing these areas where the readings need to be taken from. However, advances in deep brain stimulation has made it possible to put electrodes inside the brains of humans with different pathologies and make EEG recordings of different nuclei. Due to the similarities with the animal models, we can infer that PGO waves are happening at the same frequency in human EEGs. [7] [8] Thus, scientists can infer that PGO waves exist in humans.

Mechanism for generation and propagation

The neurophysiological studies on PGO waves conclude that the generation of these waves resides in a collection of neurons located in the pons, regardless of species research is done on. [9] From this point, the neurons branch out in a network that leads the phasic electrical signal toward the lateral geniculate nucleus and the occipital lobe.

Within this network, there are two types of neuronal groups: executive neurons and modulatory neurons.

Executive neurons

These neurons are the ones that help to generate and propagate the PGO waves throughout the brain. One research paper further breaks down this "class" of neurons into two subsets: triggering neurons and transfer neurons. [6] All of these neurons are located in the peribrachial area, which is a group of neurons surrounding the superior cerebellar penduncle.

Triggering neurons

These neurons are located in the caudolateral region of the peribrachial area. These neurons actively fire during non-REM (NREM) sleep. The most recorded activity of the neurons is during the N3 stage of NREM, also known as the slow-wave sleep cycle. These same neurons are also active during REM sleep, but at a greatly reduced amplitude than NREM sleep. [9]

Transfer neurons

The neuronal cells that allow for the transfer of PGO waves from the pons to the other parts of the brain reside on the rostral portion of the peribrachial area. This grouping of cells fire in precisely two modes. The first mode is burst firing through low-threshold Calcium (Ca2+) ion channels. The other mode is a repetitive tonic firing through Sodium (Na+) dependent ion channels. [10]

During the times when triggering neurons are firing, these cells receive those signals and begin increasing their firing. This, in turn, allows the wave to go out to the other portions of the brain.

Modulatory neurons

As the executive neurons are firing, the spread of the wave is controlled by both excitatory and inhibitory inputs. These inputs come from the modulatory neurons, which help to regulate and control the amplitude and frequency of the wave. The following types of cells play a huge part in this control process.

Aminergic neurons

Aminergic neurons are neurons that use monoamines as a neurotransmitter. This class of neurotransmitters is what keeps PGO wave amplitudes at very low levels during periods of a mammal being awake. The three specific aminergic neurotransmitters are serotonin, dopamine and norepinephrine. [11]

Cholinergic neurons

Cholinergic neurons are neurons that use acetylcholine as a neurotransmitter. Through different studies, these types of neurons have been proven to promote PGO wave generation, thus being an excitatory neuromodulator for triggering neurons. [12]

Nitroxergic neurons

Nitroxergic neurons use nitric oxide (NO) as a neurotransmitter. In theory, the increase of nitric oxide is seen as an excitatory neuromodulator in PGO wave generation. [6] This stems from animal testing that has shown increases in PGO waves as nitric oxide levels were increased in the pons. [13]

GABA-ergic neurons

GABA-ergic neurons use gamma-aminobutyric acid (GABA) as a neurotransmitter. These neurons are theorized to be inhibitory to aminergic neurons, and thus inhibitory to PGO wave propagation. [6]

Vestibular nuclei

The neurons within the vestibular nuclei region of the brain have been shown to provide excitatory bouts of PGO wave generation when stimulated. [14] The tests showed that, while the vestibular nuclei aided in creating PGO waves, the excitation of this area of the brain was in no way needed for PGO wave formation.

Amygdala

The neurons within the amygdala region of the brain have also been shown to provide excitatory bouts of PGO wave generation when electrically stimulated. [15]

Suprachiasmatic nuclei

The neurons within the suprachiasmatic nuclei region of the brain help to regulate REM sleep. [16] The REM sleep cycle length causes the frequency of PGO waves to be phase locked[ clarification needed ].

Auditory stimulation

The use of auditory stimulation has been shown to increase PGO waves during waking and sleeping cycles with neurons associated with transfers of auditory information. [17] Even while the subject is awake and in total darkness, the amplitude of PGO waves increases by auditory stimulation. Another study also found that auditory stimulation increased the amplitude of PGO waves in slow-wave sleep and REM sleep and did not reduce the amplitude of the waves with repeated auditory stimulation. [18] From this research, scientists can theorize that PGO wave generation from auditory stimulation contains a positive-feedback mechanism that can be excited by evoked PGO waves. [6]

Basal ganglia

The basal ganglia are a group of nuclei in the brains of vertebrates, situated at the base of the forebrain and strongly connected with the cerebral cortex, thalamus and pons. The basal ganglia are associated with a variety of functions, including arousal, motor control and learning. The main components of the basal ganglia are the striatum, pallidum, substantia nigra, and subthalamic nucleus (or subthalamus). This latter, glutamatergic nucleus is reciprocally connected with the PGO-transferring nuclei of the pons. In humans, subthalamic PGO-like waves, that resemble the PGO waves typically recorded in cats, can be recorded during pre-REM and REM sleep. [19] This suggests that the subthalamus may play an active role in an ascending activating network implicated in the rostral transmission of PGO waves during REM sleep in humans. [19]

REM sleep

PGO waves are an integral part of rapid eye movement (REM) sleep. As stated earlier, the density of the PGO waves coincides with the amount of eye movement measured in REM sleep. This has led some researchers to further theorize about the usefulness of PGO waves for dreaming.

One key use of REM sleep is for the brain to process and store information from the previous day. In a sense, the brain is learning by establishing new neuronal connections for things that have been learned. Neurophysiological studies have indicated a relationship between increased P-wave density during post-training REM sleep and learning performance. [20] [21] Basically, the abundance of PGO waves translates into longer periods of REM sleep, which thereby allows the brain to have longer periods where neuronal connections are formed.

The importance of PGO waves during REM sleep also aids the idea of PGO waves as a signal that a person is dreaming. [22] Since dreaming occurs during REM sleep, the PGO waves are theorized to be the signals that make the brain start to recount the experiences from the previous day. This, in turn, allows us to "see" our dreams since our visual sense is quickly going through the information it has stored.

For more information of the importance of PGO waves during REM sleep, please refer to activation synthesis theory. Another area of potential research interest involves PGO waves during lucid dreaming, active imagination and hallucination. [23]

Additional images

See also

Related Research Articles

<span class="mw-page-title-main">Thalamus</span> Structure within the brain

The thalamus is a large mass of gray matter located in the dorsal part of the diencephalon. Nerve fibers project out of the thalamus to the cerebral cortex in all directions, allowing hub-like exchanges of information. It has several functions, such as the relaying of sensory signals, including motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness.

<span class="mw-page-title-main">Rapid eye movement sleep</span> Phase of sleep characterized by random & rapid eye movements

Rapid eye movement sleep is a unique phase of sleep in mammals and birds, characterized by random rapid movement of the eyes, accompanied by low muscle tone throughout the body, and the propensity of the sleeper to dream vividly.

<span class="mw-page-title-main">Brainstem</span> Posterior part of the brain, adjoining and structurally continuous

The brainstem is the stalk-like part of the brain that interconnects the cerebrum and diencephalon with the spinal cord. In the human brain, the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch.

<span class="mw-page-title-main">Internal capsule</span> White matter structure situated in the inferomedial part of each cerebral hemisphere of the brain

The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the globus pallidus. The internal capsule contains both ascending and descending axons, going to and coming from the cerebral cortex. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.

<span class="mw-page-title-main">Auditory system</span> Sensory system used for hearing

The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs and the auditory parts of the sensory system.

<span class="mw-page-title-main">Subthalamic nucleus</span> Small lens-shaped nucleus in the brain

The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the subthalamic nucleus is located ventral to the thalamus. It is also dorsal to the substantia nigra and medial to the internal capsule. It was first described by Jules Bernard Luys in 1865, and the term corpus Luysi or Luys' body is still sometimes used.

<span class="mw-page-title-main">Pretectal area</span> Structure in the midbrain which mediates responses to ambient light

In neuroanatomy, the pretectal area, or pretectum, is a midbrain structure composed of seven nuclei and comprises part of the subcortical visual system. Through reciprocal bilateral projections from the retina, it is involved primarily in mediating behavioral responses to acute changes in ambient light such as the pupillary light reflex, the optokinetic reflex, and temporary changes to the circadian rhythm. In addition to the pretectum's role in the visual system, the anterior pretectal nucleus has been found to mediate somatosensory and nociceptive information.

<span class="mw-page-title-main">Reticular formation</span> Spinal trigeminal nucleus

The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation make up a complex set of networks in the core of the brainstem that extend from the upper part of the midbrain to the lower part of the medulla oblongata. The reticular formation includes ascending pathways to the cortex in the ascending reticular activating system (ARAS) and descending pathways to the spinal cord via the reticulospinal tracts.

<span class="mw-page-title-main">Pontine tegmentum</span>

The pontine tegmentum, or dorsal pons, is located within the brainstem, and is one of two parts of the pons, the other being the ventral pons or basilar part of the pons. The pontine tegmentum can be defined in contrast to the basilar pons: basilar pons contains the corticospinal tract running craniocaudally and can be considered the rostral extension of the ventral medulla oblongata; however, basilar pons is distinguished from ventral medulla oblongata in that it contains additional transverse pontine fibres that continue laterally to become the middle cerebellar peduncle. The pontine tegmentum is all the material dorsal from the basilar pons to the fourth ventricle. Along with the dorsal surface of the medulla, it forms part of the rhomboid fossa – the floor of the fourth ventricle.

The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus is a collection of neurons located in the upper pons in the brainstem. It lies caudal to the substantia nigra and adjacent to the superior cerebellar peduncle. It has two divisions of subnuclei; the pars compacta containing mainly cholinergic neurons, and the pars dissipata containing mainly glutamatergic neurons and some non-cholinergic neurons. The pedunculopontine nucleus is one of the main components of the reticular activating system. It was first described in 1909 by Louis Jacobsohn-Lask, a German neuroanatomist.

<span class="mw-page-title-main">Medial geniculate nucleus</span>

The medial geniculate nucleus (MGN) or medial geniculate body (MGB) is part of the auditory thalamus and represents the thalamic relay between the inferior colliculus (IC) and the auditory cortex (AC). It is made up of a number of sub-nuclei that are distinguished by their neuronal morphology and density, by their afferent and efferent connections, and by the coding properties of their neurons. It is thought that the MGN influences the direction and maintenance of attention.

<span class="mw-page-title-main">Slow-wave sleep</span> Period of sleep in humans and other animals

Slow-wave sleep (SWS), often referred to as deep sleep, consists of stage three of non-rapid eye movement sleep. It usually lasts between 70 and 90 minutes and takes place during the first hours of the night. Initially, SWS consisted of both Stage 3, which has 20–50 percent delta wave activity, and Stage 4, which has more than 50 percent delta wave activity.

The zona incerta (ZI) is a horizontally elongated region of gray matter in the subthalamus below the thalamus. Its connections project extensively over the brain from the cerebral cortex down into the spinal cord.

<span class="mw-page-title-main">Cochlear nucleus</span> Two cranial nerve nuclei of the human brainstem

The cochlear nuclear (CN) complex comprises two cranial nerve nuclei in the human brainstem, the ventral cochlear nucleus (VCN) and the dorsal cochlear nucleus (DCN). The ventral cochlear nucleus is unlayered whereas the dorsal cochlear nucleus is layered. Auditory nerve fibers, fibers that travel through the auditory nerve carry information from the inner ear, the cochlea, on the same side of the head, to the nerve root in the ventral cochlear nucleus. At the nerve root the fibers branch to innervate the ventral cochlear nucleus and the deep layer of the dorsal cochlear nucleus. All acoustic information thus enters the brain through the cochlear nuclei, where the processing of acoustic information begins. The outputs from the cochlear nuclei are received in higher regions of the auditory brainstem.

Recurrent thalamo-cortical resonance is an observed phenomenon of oscillatory neural activity between the thalamus and various cortical regions of the brain. It is proposed by Rodolfo Llinas and others as a theory for the integration of sensory information into the whole of perception in the brain. Thalamocortical oscillation is proposed to be a mechanism of synchronization between different cortical regions of the brain, a process known as temporal binding. This is possible through the existence of thalamocortical networks, groupings of thalamic and cortical cells that exhibit oscillatory properties.

Low-threshold spikes (LTS) refer to membrane depolarizations by the T-type calcium channel. LTS occur at low, negative, membrane depolarizations. They often follow a membrane hyperpolarization, which can be the result of decreased excitability or increased inhibition. LTS result in the neuron reaching the threshold for an action potential. LTS is a large depolarization due to an increase in Ca2+ conductance, so LTS is mediated by calcium (Ca2+) conductance. The spike is typically crowned by a burst of two to seven action potentials, which is known as a low-threshold burst. LTS are voltage dependent and are inactivated if the cell's resting membrane potential is more depolarized than −60mV. LTS are deinactivated, or recover from inactivation, if the cell is hyperpolarized and can be activated by depolarizing inputs, such as excitatory postsynaptic potentials (EPSP). LTS were discovered by Rodolfo Llinás and coworkers in the 1980s.

<span class="mw-page-title-main">Anatomy of the cerebellum</span> Structures in the cerebellum, a part of the brain

The anatomy of the cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.

<span class="mw-page-title-main">Sleep and memory</span> Relationship between sleep and memory

The relationship between sleep and memory has been studied since at least the early 19th century. Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, is a product of brain plasticity, the structural changes within synapses that create associations between stimuli. Stimuli are encoded within milliseconds; however, the long-term maintenance of memories can take additional minutes, days, or even years to fully consolidate and become a stable memory that is accessible. Therefore, the formation of a specific memory occurs rapidly, but the evolution of a memory is often an ongoing process.

The activation-synthesis hypothesis, proposed by Harvard University psychiatrists John Allan Hobson and Robert McCarley, is a neurobiological theory of dreams first published in the American Journal of Psychiatry in December 1977. The differences in neuronal activity of the brainstem during waking and REM sleep were observed, and the hypothesis proposes that dreams result from brain activation during REM sleep. Since then, the hypothesis has undergone an evolution as technology and experimental equipment has become more precise. Currently, a three-dimensional model called AIM Model, described below, is used to determine the different states of the brain over the course of the day and night. The AIM Model introduces a new hypothesis that primary consciousness is an important building block on which secondary consciousness is constructed.

The parafacial zone (PZ) is a brain structure located in the brainstem within the medulla oblongata believed to be heavily responsible for non-rapid eye movement (non-REM) sleep regulation, specifically for inducing slow-wave sleep.

References

  1. 1 2 Gott, Jarrod A.; Liley, David T. J.; Hobson, J. Allan (2017). "Towards a Functional Understanding of PGO Waves". Frontiers in Human Neuroscience. 11: 89. doi: 10.3389/fnhum.2017.00089 . ISSN   1662-5161. PMC   5334507 . PMID   28316568.
  2. Lim, Andrew S.; Lozano, Andres M.; Moro, Elena; Hamani, Clement; Hutchison, William D.; Dostrovsky, Jonathan O.; Lang, Anthony E.; Wennberg, Richard A.; Murray, Brian J. (2007-07-01). "Characterization of REM-Sleep Associated Ponto-Geniculo-Occipital Waves in the Human Pons". Sleep. 30 (7): 823–827. doi:10.1093/sleep/30.7.823. ISSN   0161-8105. PMC   1978372 . PMID   17682651.
  3. Jouvet, M., Michel, F., and Courjon, J. 1959. L'activite electrique du rhinencephale au cours dusommeil chez le chat. C.R. Soc. Biol. 153:101–105.
  4. Brooks, D.C., and Bizzi, E. 1963. Brain stem electrical activity during deep sleep. Arch. Ital. Biol.101:648–665.
  5. Stern, W.C., Forbes, W.B., and Morgane, P.J. 1974. Absence of ponto-geniculo-occipital (PGO) spikes in rats. Physiol. Behav. 12:293–295.
  6. 1 2 3 4 5 Datta S. 1997. Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation. Cellular and Molecular Neurobiology 17:341–65
  7. Fernández-Mendoza J., Lozano B., Seijo F., Fernández-González F., Vela-Bueno A. 2006. Subthalamic nucleus activity during human REM sleep: the PGO-like waves. J Sleep Res 2006;15:243.
  8. Lim, A.S.; Lozano, A.M.; Moro, E.; Hamani, C.; Hutchison, W.D.; et al. (2007b). "Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons". Sleep. 30 (7): 823–7. doi:10.1093/sleep/30.7.823. PMC   1978372 . PMID   17682651.
  9. 1 2 Datta, S.; Hobson, J.A. (1994). "Neuronal activity in the caudo-lateral peribrachial pons:Relationship to PGO waves and rapid eye movements". J. Neurophysiol. 71 (1): 95–109. doi:10.1152/jn.1994.71.1.95. PMID   8158244.
  10. Williams, J.A.; Reiner, P.B. (1993). "Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro". J. Neurosci. 13 (9): 3878–3883. doi: 10.1523/jneurosci.13-09-03878.1993 . PMC   6576458 . PMID   8103553.
  11. Brooks, D. C.; Gershon, M. D. (1977-01-01). "Amine repletion in the reserpinized cat: effect upon PGO waves and REM sleep". Electroencephalography and Clinical Neurophysiology. 42 (1): 35–47. doi:10.1016/0013-4694(77)90149-3. ISSN   0013-4694. PMID   64348.
  12. Steriade, M., Datta, S., Pare, D., Oakson, G., and Currodossi, R. (1990a). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamortical systems. J. Heurosci. 10:2541–2559.
  13. Leonard, T.O.; Lydic, R. (1995). "Nitric oxide synthase inhibition decreases pontine acetylcholinerelease". NeuroReport. 6 (11): 1525–1529. doi:10.1097/00001756-199507310-00015. PMID   7579140. S2CID   10368008.
  14. Morrison, A.R., and Pompeiano, O. (1966). Vestibular influences during sleep. IV. Functional relations between the vestibular nsleep. Arch. Ital. Biol. 104:425–458.
  15. Calvo, J.M.; Badillo, S.; Morales-Ramirez, M.; Palacios-Salas, P. (1987). "The role of temporal lobe amygdala in ponto-geniculo-occipital activity and sleep organization in cats". Brain Res. 403 (1): 22–30. doi:10.1016/0006-8993(87)90118-1. PMID   3828815. S2CID   27712179.
  16. Siegel, J.M. (2005). "Clues to the functions of mammalian sleep". Nature. 437 (7063): 1264–71. Bibcode:2005Natur.437.1264S. doi:10.1038/nature04285. PMC   8760626 . PMID   16251951.
  17. Callaway C.W., Lydic R., Baghdoyan H.A., Hobson J.A. 1987. Pontogeniculoocipital Waves – Spontaneous Visual-System ACtivity During Rapid Eye-Movement Sleep. Cellular and Molecular Neurobiology 7:105–49
  18. Bowker, R.M., and Morrison, A.R. 1977. The PGO spikes: An indicator of hyperalertness. In Sleep Research, (W.P. Koella and P. Levin, Eds.), Karger, Basel, pp. 23–77.
  19. 1 2 Fernández-Mendoza J., Lozano B., Seijo F., Santamarta-Liébana E., Ramos-Platón M.J., Vela-Bueno A., Fernández-González F. 2009. Evidence of subthalamic pgo-like waves during rem sleep in humans: a deep brain polysomnographic study. SLEEP 32(9):1117–26.
  20. Datta, S (2006). "Activation of phasic pontine-wave generator: a mechanism for sleep-dependent memory processing". Sleep Biol. Rhythms. 4: 16–26. doi:10.1111/j.1479-8425.2006.00202.x. S2CID   144514044.
  21. Datta, S.; Saha, S.; Prutzman, S.L.; Mullins, O.J.; Mavanji, V. (2005). "Pontine-wave generator activation-dependent memory processing of avoidance learning involves the dorsal hippocampus in the rat". J. Neurosci. Res. 80 (5): 727–737. doi:10.1002/jnr.20501. PMC   1224707 . PMID   15880522.
  22. Hobson, J.A.; Pace-Schott, E.F.; Stickgold, R. (2000). "Dreaming and the brain: Toward a cognitive neuroscience of conscious states". Behavioral and Brain Sciences. 23 (6): 793–842, discussion 904–1121. doi:10.1017/S0140525X00003976. PMID   11515143. S2CID   14104546.
  23. Gott, J.A.; Liley, D.T.J.; Hobson, J.A. (2017). "Towards a Functional Understanding of PGO Waves". Front. Hum. Neurosci. 11: 89. doi: 10.3389/fnhum.2017.00089 . PMC   5334507 . PMID   28316568.