Phytic acid

Last updated
Phytic acid
Phytic acid.svg
Phytic acid molecule ball.png
   Carbon, C
   Hydrogen, H
   Oxygen, O
   Phosphorus, P
Phytic acid molecule spacefill.png
Names
IUPAC name
(1R,2S,3r,4R,5S,6s)-cyclohexane-1,2,3,4,5,6-hexayl hexakis[dihydrogen (phosphate)]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.369 OOjs UI icon edit-ltr-progressive.svg
E number E391 (antioxidants, ...)
PubChem CID
UNII
  • InChI=1S/C6H18O24P6/c7-31(8,9)25-1-2(26-32(10,11)12)4(28-34(16,17)18)6(30-36(22,23)24)5(29-35(19,20)21)3(1)27-33(13,14)15/h1-6H,(H2,7,8,9)(H2,10,11,12)(H2,13,14,15)(H2,16,17,18)(H2,19,20,21)(H2,22,23,24)/t1-,2-,3-,4+,5-,6- Yes check.svgY
    Key: IMQLKJBTEOYOSI-GPIVLXJGSA-N Yes check.svgY
  • InChI=1/C6H18O24P6/c7-31(8,9)25-1-2(26-32(10,11)12)4(28-34(16,17)18)6(30-36(22,23)24)5(29-35(19,20)21)3(1)27-33(13,14)15/h1-6H,(H2,7,8,9)(H2,10,11,12)(H2,13,14,15)(H2,16,17,18)(H2,19,20,21)(H2,22,23,24)/t1-,2-,3-,4+,5-,6-
    Key: IMQLKJBTEOYOSI-GPIVLXJGBP
  • [C@@H]1([C@@H]([C@@H]([C@@H]([C@H]([C@@H]1OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O)OP(=O)(O)O
Properties
C6H18O24P6
Molar mass 660.029 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Phytic acid is a six-fold dihydrogenphosphate ester of inositol (specifically, of the myo isomer), also called inositol hexaphosphate, inositol hexakisphosphate (IP6) or inositol polyphosphate. At physiological pH, the phosphates are partially ionized, resulting in the phytate anion.

Contents

The (myo) phytate anion is a colorless species that has significant nutritional role as the principal storage form of phosphorus in many plant tissues, especially bran and seeds. It is also present in many legumes, cereals, and grains. Phytic acid and phytate have a strong binding affinity to the dietary minerals, calcium, iron, and zinc, inhibiting their absorption in the small intestine. [1]

The lower inositol polyphosphates are inositol esters with less than six phosphates, such as inositol penta- (IP5), tetra- (IP4), and triphosphate (IP3). These occur in nature as catabolites of phytic acid.

Significance in agriculture

The hexavalent phytate anion. Phytate.svg
The hexavalent phytate anion.

Phytic acid was discovered in 1903. [2]

Generally, phosphorus and inositol in phytate form are not bioavailable to non-ruminant animals because these animals lack the enzyme phytase required to hydrolyze the inositol-phosphate linkages. Ruminants are able to digest phytate because of the phytase produced by rumen microorganisms. [3]

In most commercial agriculture, non-ruminant livestock, such as swine, fowl, and fish, [4] are fed mainly grains, such as maize, legumes, and soybeans. [5] Because phytate from these grains and beans is unavailable for absorption, the unabsorbed phytate passes through the gastrointestinal tract, elevating the amount of phosphorus in the manure. [3] Excess phosphorus excretion can lead to environmental problems, such as eutrophication. [6] The use of sprouted grains may reduce the quantity of phytic acids in feed, with no significant reduction of nutritional value. [7]

Also, viable low-phytic acid mutant lines have been developed in several crop species in which the seeds have drastically reduced levels of phytic acid and concomitant increases in inorganic phosphorus. [8] However, germination problems have reportedly hindered the use of these cultivars thus far. This may be due to phytic acid's critical role in both phosphorus and metal ion storage. [9] Phytate variants also have the potential to be used in soil remediation, to immobilize uranium, nickel, and other inorganic contaminants. [10]

Biological effects

Plants

Although indigestible for many animals as they occur in seeds and grains, phytic acid and its metabolites have several important roles for the seedling plant.

Most notably, phytic acid functions as a phosphorus store, as an energy store, as a source of cations and as a source of myo-inositol (a cell wall precursor). Phytic acid is the principal storage form of phosphorus in plant seeds. [11]

In vitro

In animal cells, myo-inositol polyphosphates are ubiquitous, and phytic acid (myo-inositol hexakisphosphate) is the most abundant, with its concentration ranging from 10 to 100 μM in mammalian cells, depending on cell type and developmental stage. [12] [13]

Phytic acid is not obtained from the animal diet, but must be synthesized inside the cell from phosphate and inositol (which in turn is produced from glucose, usually in the kidneys). The interaction of intracellular phytic acid with specific intracellular proteins has been investigated in vitro, and these interactions have been found to result in the inhibition or potentiation of the activities of those proteins. [14] [15]

Inositol hexaphosphate facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1. [16]

Dentistry

IP6 has potential use in endodontics, adhesive, preventive, and regenerative dentistry, and in improving the characteristics and performance of dental materials. [17] [18] [19]

Food science

Phytic acid, mostly as phytate in the form of phytin, is found within the hulls and kernels of seeds, [20] including nuts, grains, and pulses. [1]

In-home food preparation techniques may break down the phytic acid in all of these foods. Simply cooking the food will reduce the phytic acid to some degree. More effective methods are soaking in an acid medium, sprouting, and lactic acid fermentation such as in sourdough and pickling. [21]

No detectable phytate (less than 0.02% of wet weight) was observed in vegetables such as scallion and cabbage leaves or in fruits such as apples, oranges, bananas, or pears. [22]

As a food additive, phytic acid is used as the preservative, E391. [23] [24]

Dry food sources of phytic acid [25] [22] [26] [27] [28] [29] [30] [31]
FoodProportion by weight (g/100 g)
Min.Max.
Hulled Hemp Seed [20] 4.54.5
Pumpkin seed 4.34.3
Linseed 2.152.78
Sesame seeds flour5.365.36
Chia seeds 0.961.16
Almonds 1.353.22
Brazil nuts 1.976.34
Coconut 0.360.36
Hazelnut 0.650.65
Peanut 0.951.76
Walnut 0.980.98
Maize (corn)0.752.22
Oat 0.421.16
Oat meal0.892.40
Brown rice 0.840.99
Polished rice 0.140.60
Wheat 0.391.35
Wheat flour 0.251.37
Wheat germ 0.081.14
Whole wheat bread 0.431.05
Beans, pinto 2.382.38
Buckwheat 1.001.00
Chickpeas 0.560.56
Lentils 0.440.50
Soybeans 1.002.22
Tofu 1.462.90
Soy beverage1.241.24
Soy protein concentrate1.242.17
New potato 0.180.34
Spinach 0.22NR
Avocado fruit 0.510.51
Chestnuts [32] 0.47
Sunflower seeds 1.60
Fresh food sources of phytic acid [27]
FoodProportion by weight (%)
Min.Max.
Taro 0.1430.195
Cassava 0.1140.152

Dietary mineral absorption

Phytic acid has a strong affinity to the dietary trace elements, calcium, iron, and zinc, inhibiting their absorption from the small intestine. [1] [33] Phytochemicals such as polyphenols and tannins also influence the binding. [34] When iron and zinc bind to phytic acid, they form insoluble precipitates and are far less absorbable in the intestines. [35] [36]

Because phytic acid also can affect the absorption of iron, "dephytinization should be considered as a major strategy to improve iron nutrition during the weaning period". [37] Dephytinization by exogenous phytase to phytate-containing food is an approach being investigated to improve nutritional health in populations that are vulnerable to mineral deficiency due to their reliance on phytate-laden food staples. Crop breeding to increase mineral density (biofortification) or reducing phytate content are under preliminary research. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Iron deficiency</span> State in which a body lacks enough iron to supply its needs

Iron deficiency, or sideropenia, is the state in which a body lacks enough iron to supply its needs. Iron is present in all cells in the human body and has several vital functions, such as carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein, acting as a transport medium for electrons within the cells in the form of cytochromes, and facilitating oxygen enzyme reactions in various tissues. Too little iron can interfere with these vital functions and lead to morbidity and death.

<span class="mw-page-title-main">Sprouting</span> Practice of germinating seeds to be eaten raw or cooked

Sprouting is the natural process by which seeds or spores germinate and put out shoots, and already established plants produce new leaves or buds, or other structures experience further growth.

<span class="mw-page-title-main">Bran</span> Hard outer layers of cereal grain

Bran, also known as miller's bran, is the hard layers of cereal grain surrounding the endosperm. It consists of the combined aleurone and pericarp. Corn (maize) bran also includes the pedicel. Along with the germ, it is an integral part of whole grains, and is often produced as a byproduct of milling in the production of refined grains.

<i>Macrotyloma uniflorum</i> Species of legume

Macrotyloma uniflorum is a legume native to tropical southern Asia, known for its distinct taste and texture, widely used legume in many cuisines. It is also known for human consumption for its rich nutrients and reputed medicinal properties. It is commonly grown for horse feed, hence the name “horse gram”. Horse gram grown in parts of India, as well as Nepal, Malaysia, Sri Lanka, and is introduced to the West Indies. It is consumed whole, sprouted, or ground. It is consumed in many parts of India and is also known as a superfood. Horse gram is also allowed to be eaten on some Hindu fasting days. Medical uses of these legumes have been discussed and is described in the Ayurveda.

<span class="mw-page-title-main">Inositol</span> Carbocyclic sugar

Inositol, primarily the isomer myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation. Concerning regulation of osmosis, in most mammalian cells the intracellular concentrations of myo-inositol are 5 to 500 times greater than the extracellular concentrations.

<span class="mw-page-title-main">Vegetarian nutrition</span> Nutritional and human health aspects of vegetarian diets

Vegetarian nutrition is the set of health-related challenges and advantages of vegetarian diets.

<span class="mw-page-title-main">Inositol phosphate</span>

Inositol phosphates are a group of mono- to hexaphosphorylated inositols. Each form of inositol phosphate is distinguished by the number and position of the phosphate group on the inositol ring.

<span class="mw-page-title-main">Phytase</span> Class of enzymes

A phytase is any type of phosphatase enzyme that catalyzes the hydrolysis of phytic acid – an indigestible, organic form of phosphorus that is found in many plant tissues, especially in grains and oil seeds – and releases a usable form of inorganic phosphorus. While phytases have been found to occur in animals, plants, fungi and bacteria, phytases have been most commonly detected and characterized from fungi.

<span class="mw-page-title-main">Inositol oxygenase</span> Protein-coding gene in the species Homo sapiens

Inositol oxygenase, also commonly referred to as myo-inositol oxygenase (MIOX), is a non-heme di-iron enzyme that oxidizes myo-inositol to glucuronic acid. The enzyme employs a unique four-electron transfer at its Fe(II)/Fe(III) coordination sites and the reaction proceeds through the direct binding of myo-inositol followed by attack of the iron center by diatomic oxygen. This enzyme is part of the only known pathway for the catabolism of inositol in humans and is expressed primarily in the kidneys. Recent medical research regarding MIOX has focused on understanding its role in metabolic and kidney diseases such as diabetes, obesity and acute kidney injury. Industrially-focused engineering efforts are centered on improving MIOX activity in order to produce glucaric acid in heterologous hosts.

Zinc deficiency is defined either as insufficient zinc to meet the needs of the body, or as a serum zinc level below the normal range. However, since a decrease in the serum concentration is only detectable after long-term or severe depletion, serum zinc is not a reliable biomarker for zinc status. Common symptoms include increased rates of diarrhea. Zinc deficiency affects the skin and gastrointestinal tract; brain and central nervous system, immune, skeletal, and reproductive systems.

<span class="mw-page-title-main">Phosphatidylinositol diacylglycerol-lyase</span>

The enzyme phosphatidylinositol diacylglycerol-lyase catalyzes the following reaction:

The enzyme 3-phytase (EC 3.1.3.8) catalyzes the reaction

The enzyme 4-phytase (EC 3.1.3.26) catalyzes the following reaction:

The enzyme 5-phytase (EC 3.1.3.72) catalyzes the reaction

<span class="mw-page-title-main">Antinutrient</span> Compound that affects the absorption of nutrients

Antinutrients are natural or synthetic compounds that interfere with the absorption of nutrients. Nutrition studies focus on antinutrients commonly found in food sources and beverages. Antinutrients may take the form of drugs, chemicals that naturally occur in food sources, proteins, or overconsumption of nutrients themselves. Antinutrients may act by binding to vitamins and minerals, preventing their uptake, or inhibiting enzymes.

<span class="mw-page-title-main">Nutritional neuroscience</span> Scientific discipline

Nutritional neuroscience is the scientific discipline that studies the effects various components of the diet such as minerals, vitamins, protein, carbohydrates, fats, dietary supplements, synthetic hormones, and food additives have on neurochemistry, neurobiology, behavior, and cognition.

<span class="mw-page-title-main">Vegan nutrition</span> Nutritional and human health aspects of vegan diets

Vegan nutrition refers to the nutritional and human health aspects of vegan diets. A well-planned, balanced vegan diet is suitable to meet all recommendations for nutrients in every stage of human life. Vegan diets tend to be higher in dietary fiber, magnesium, folic acid, vitamin C, vitamin E, and phytochemicals; and lower in calories, saturated fat, iron, cholesterol, long-chain omega-3 fatty acids, vitamin D, calcium, zinc, and vitamin B12.

Inositol-hexakisphosphate kinase is an enzyme with systematic name ATP:1D-myo-inositol-hexakisphosphate 5-phosphotransferase. This enzyme catalyses the following chemical reaction

Soy formula is a substitute for human breast milk. It is a commercial product based on the proteins found in soybeans. Soy infant formula uses processed soybeans as its source of protein, and comes in powdered or liquid form. Usually lactose-free, soy infant formula contains a different sugar. Infants who are intolerant of cows' milk protein may also be intolerant of soy protein. It differs from human breast milk in a number of ways. Soy protein inhibits the absorption of iron. The soy-based formulas discussed by the World Health Organization reports that soy formula is fortified with iron to compensate for this effect. One naturally occurring plant-based compound found in soy-based infant formula is phytic acid. It is also a strong inhibitor of iron absorption, though it can be removed in processing. It is not known how many manufacturers of soy-based formula incorporate this practice. China and Vietnam have regulated soy-based infant formulas to include NaFeEDTA to fortify the formula and enhance the absorption of iron by the infant. When iron compounds are added to soy-based infant formula, the iron compound is encapsulated to prevent it from making the formula dark.

<span class="mw-page-title-main">Beta-propeller phytase</span> Group of enzymes

β-propeller phytases (BPPs) are a group of enzymes (i.e. protein superfamily) with a round beta-propeller structure. BPPs are phytases, which means that they are able to remove (hydrolyze) phosphate groups from phytic acid and its phytate salts. Hydrolysis happens stepwise and usually ends in myo-inositol triphosphate product which has three phosphate groups still bound to it. The actual substrate of BPPs is calcium phytate and in order to hydrolyze it, BPPs must have Ca2+ ions bound to themselves. BPPs are the most widely found phytase superfamily in the environment and they are thought to have a major role in phytate-phosphorus cycling in soil and water. As their alternative name alkaline phytase suggests, BPPs work best in basic (or neutral) environment. Their pH optima is 6–9, which is unique among the phytases.

References

  1. 1 2 3 Schlemmer, U.; Frølich, W.; Prieto, R. M.; Grases, F. (2009). "Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis" (PDF). Molecular Nutrition & Food Research. 53 (Suppl 2): S330–75. doi:10.1002/mnfr.200900099. PMID   19774556.
  2. Mullaney EJ, Ullah, Abul H.J. "Phytases: attributes, catalytic mechanisms, and applications" (PDF). United States Department of Agriculture–Agricultural Research Service. Archived from the original (PDF) on 2012-11-07. Retrieved May 18, 2012.
  3. 1 2 Klopfenstein TJ, Angel R, Cromwell G, Erickson GE, Fox DG, Parsons C, Satter LD, Sutton AL, Baker DH (July 2002). "Animal Diet Modification to Decrease the Potential for Nitrogen and Phosphorus Pollution". Council for Agricultural Science and Technology. 21.
  4. Romarheim OH, Zhang C, Penn M, Liu YJ, Tian LX, Skrede A, Krogdahl Å, Storebakken T (2008). "Growth and intestinal morphology in cobia (Rachycentron canadum) fed extruded diets with two types of soybean meal partly replacing fish meal". Aquaculture Nutrition. 14 (2): 174–180. doi:10.1111/j.1365-2095.2007.00517.x.
  5. Jezierny, D.; Mosenthin, R.; Weiss, E. (2010-05-01). "The use of grain legumes as a protein source in pig nutrition: A review". Animal Feed Science and Technology. 157 (3–4): 111–128. doi:10.1016/j.anifeedsci.2010.03.001.
  6. Mallin MA (2003). "Industrialized Animal Production—A Major Source of Nutrient and Microbial Pollution to Aquatic Ecosystems". Population and Environment. 24 (5): 369–385. doi:10.1023/A:1023690824045. JSTOR   27503850. S2CID   154321894.
  7. Malleshi, N. G.; Desikachar, H. S. R. (1986). "Nutritive value of malted millet flours". Plant Foods for Human Nutrition. 36 (3): 191–6. doi:10.1007/BF01092036.
  8. Guttieri MJ, Peterson KM, Souza EJ (2006). "Milling and Baking Quality of Low Phytic Acid Wheat". Crop Science. 46 (6): 2403–8. doi:10.2135/cropsci2006.03.0137. S2CID   33700393.
  9. Shitan, Nobukazu; Yazaki, Kazufumi (2013-01-01), Jeon, Kwang W. (ed.), "Chapter Nine - New Insights into the Transport Mechanisms in Plant Vacuoles", International Review of Cell and Molecular Biology, 305, Academic Press: 383–433, doi:10.1016/B978-0-12-407695-2.00009-3, PMID   23890387 , retrieved 2020-04-24
  10. Seaman JC, Hutchison JM, Jackson BP, Vulava VM (2003). "In situ treatment of metals in contaminated soils with phytate". Journal of Environmental Quality. 32 (1): 153–61. doi:10.2134/jeq2003.0153. PMID   12549554.
  11. Reddy NR, Sathe SK, Salunkhe DK (1982). "Phytates in legumes and cereals". Advances in Food Research. Advances in Food Research. Vol. 28. pp. 1–92. doi:10.1016/s0065-2628(08)60110-x. ISBN   9780120164288. PMID   6299067.
  12. Szwergold BS, Graham RA, Brown TR (December 1987). "Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR". Biochemical and Biophysical Research Communications. 149 (3): 874–81. doi:10.1016/0006-291X(87)90489-X. PMID   3426614.
  13. Sasakawa N, Sharif M, Hanley MR (July 1995). "Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate". Biochemical Pharmacology. 50 (2): 137–46. doi:10.1016/0006-2952(95)00059-9. PMID   7543266.
  14. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (September 2000). "Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair". Cell. 102 (6): 721–9. doi: 10.1016/S0092-8674(00)00061-1 . PMID   11030616. S2CID   112839.
  15. Norris FA, Ungewickell E, Majerus PW (January 1995). "Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro". The Journal of Biological Chemistry. 270 (1): 214–7. doi: 10.1074/jbc.270.1.214 . PMID   7814377.
  16. Dick RA, Zadrozny KK, Xu C, Schur FK, Lyddon TD, Ricana CL, Wagner JM, Perilla JR, Ganser-Pornillos BK, Johnson MC, Pornillos O, Vogt VM (August 2018). "Inositol phosphates are assembly co-factors for HIV-1". Nature. 560 (7719): 509–512. Bibcode:2018Natur.560..509D. doi:10.1038/s41586-018-0396-4. PMC   6242333 . PMID   30069050.
  17. Nassar, Mohannad; Nassar, Rania; Maki, Husain; Al-Yagoob, Abdullah; Hachim, Mahmood; Senok, Abiola; Williams, David; Hiraishi, Noriko (2021). "Phytic Acid: Properties and Potential Applications in Dentistry". Frontiers in Materials. 8: 29. Bibcode:2021FrMat...8...29N. doi: 10.3389/fmats.2021.638909 .
  18. Nassar M, Nassar R, Maki H, Al-Yagoob A, Hachim M, Senok A, Williams D, Hiraishi N (March 2021). "Phytic Acid: Properties and Potential Applications in Dentistry". Frontiers in Materials. 8: 29. Bibcode:2021FrMat...8...29N. doi: 10.3389/fmats.2021.638909 .
  19. Nassar, Rania; Nassar, Mohannad; Vianna, Morgana E.; Naidoo, Nerissa; Alqutami, Fatma; Kaklamanos, Eleftherios G.; Senok, Abiola; Williams, David (2021). "Antimicrobial Activity of Phytic Acid: An Emerging Agent in Endodontics". Frontiers in Cellular and Infection Microbiology. 11: 753649. doi: 10.3389/fcimb.2021.753649 . ISSN   2235-2988. PMC   8576384 . PMID   34765567.
  20. 1 2 Ellison, Campbell; Moreno, Teresa; Catchpole, Owen; Fenton, Tina; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn (2021-07-01). "Extraction of hemp seed using near-critical CO2, propane and dimethyl ether". The Journal of Supercritical Fluids. 173: 105218. doi:10.1016/j.supflu.2021.105218. ISSN   0896-8446. S2CID   233822572.
  21. "Phytates in cereals and legumes". fao.org.
  22. 1 2 Phillippy BQ, Wyatt CJ (May 2001). "Degradation of phytate in foods by phytases in fruit and vegetable extracts". Journal of Food Science. 66 (4): 535–539. doi:10.1111/j.1365-2621.2001.tb04598.x.
  23. Functional Food - Improve Health through Adequate Food edited by María Chávarri Hueda, pg. 86
  24. "Wise Eating, Made Easy".
  25. Dephytinisation with Intrinsic Wheat Phytase and Iron Fortification Significantly Increase Iron Absorption from Fonio (Digitaria exilis) Meals in West African Women (2013)
  26. Reddy NR, Sathe SK (2001). Food Phytates. Boca Raton: CRC. ISBN   978-1-56676-867-2.[ page needed ]
  27. 1 2 Phillippy BQ, Bland JM, Evens TJ (January 2003). "Ion chromatography of phytate in roots and tubers". Journal of Agricultural and Food Chemistry. 51 (2): 350–3. doi:10.1021/jf025827m. PMID   12517094.
  28. Macfarlane BJ, Bezwoda WR, Bothwell TH, Baynes RD, Bothwell JE, MacPhail AP, Lamparelli RD, Mayet F (February 1988). "Inhibitory effect of nuts on iron absorption". The American Journal of Clinical Nutrition. 47 (2): 270–4. doi:10.1093/ajcn/47.2.270. PMID   3341259.
  29. Gordon DT, Chao LS (March 1984). "Relationship of components in wheat bran and spinach to iron bioavailability in the anemic rat". The Journal of Nutrition. 114 (3): 526–35. doi:10.1093/jn/114.3.526. PMID   6321704.
  30. Arendt EK, Zannini E (2013-04-09). "Chapter 11: Buckwheat". Cereal grains for the food and beverage industries. Woodhead Publishing. p. 388. ISBN   978-0-85709-892-4.
  31. Pereira Da Silva B. Concentration of nutrients and bioactive compounds in chia (Salvia Hispanica L.), protein quality and iron bioavailability in wistar rats (Ph.D. thesis). Federal University of Viçosa.
  32. Scuhlz M. "Paleo Diet Guide: With Recipes in 30 Minutes or Less: Diabetes Heart Disease: Paleo Diet Friendly: Dairy Gluten Nut Soy Free Cookbook". PWPH Publications via Google Books.
  33. Gupta, R. K.; Gangoliya, S. S.; Singh, N. K. (2013). "Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains". Journal of Food Science and Technology. 52 (2): 676–684. doi:10.1007/s13197-013-0978-y. PMC   4325021 . PMID   25694676.
  34. Prom-u-thai C, Huang L, Glahn RP, Welch RM, Fukai S, Rerkasem B (2006). "Iron (Fe) bioavailability and the distribution of anti-Fe nutrition biochemicals in the unpolished, polished grain and bran fraction of five rice genotypes". Journal of the Science of Food and Agriculture. 86 (8): 1209–15. Bibcode:2006JSFA...86.1209P. doi:10.1002/jsfa.2471. Archived from the original on 2020-02-23. Retrieved 2018-12-29.
  35. Hurrell RF (September 2003). "Influence of vegetable protein sources on trace element and mineral bioavailability". The Journal of Nutrition. 133 (9): 2973S–7S. doi: 10.1093/jn/133.9.2973S . PMID   12949395.
  36. Committee on Food Protection; Food and Nutrition Board; National Research Council (1973). "Phytates". Toxicants Occurring Naturally in Foods. National Academy of Sciences. pp.  363–371. ISBN   978-0-309-02117-3.
  37. Hurrell RF, Reddy MB, Juillerat MA, Cook JD (May 2003). "Degradation of phytic acid in cereal porridges improves iron absorption by human subjects". The American Journal of Clinical Nutrition. 77 (5): 1213–9. CiteSeerX   10.1.1.333.4941 . doi:10.1093/ajcn/77.5.1213. PMID   12716674.
  38. Raboy, Victor (22 January 2020). "Low phytic acid crops: Observations based on four decades of research". Plants. 9 (2): 140. doi: 10.3390/plants9020140 . ISSN   2223-7747. PMC   7076677 . PMID   31979164.