Quantum state space

Last updated

In physics, a quantum state space is an abstract space in which different "positions" represent, not literal locations, but rather quantum states of some physical system. It is the quantum analog of the phase space of classical mechanics.

Contents

Relative to Hilbert space

In quantum mechanics a state space is a separable complex Hilbert space. The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors. Having an nonzero component along multiple dimensions is called a superposition. In the formalism of quantum mechanics these state vectors are often written using Dirac's compact bra–ket notation. [3] :165

Examples

The spin state of a silver atom in the Stern–Gerlach experiment can be represented in a two state space. The spin can be aligned with a measuring apparatus (arbitrarily called 'up') or oppositely ('down'). [4] In Dirac's notation these two states can be written as . The space of a two spin system has four states, .

The spin state is a discrete degree of freedom; quantum state spaces can have continuous degrees of freedom. For example, a particle in one space dimension has one degree of freedom ranging from to . In Dirac notation, the states in this space might be written as or . [5] :302

Relative to 3D space

Even in the early days of quantum mechanics, the state space (or configurations as they were called at first) was understood to be essential for understanding simple quantum-mechanical problems. In 1929, Nevill Mott showed that "tendency to picture the wave as existing in ordinary three dimensional space, whereas we are really dealing with wave functions in multispace" makes analysis of simple interaction problems more difficult. [6] Mott analyzes -particle emission in a cloud chamber. The emission process is isotropic, a spherical wave in quantum mechanics, but the tracks observed are linear.

Spherical wave Indeterminacy principle.gif
Spherical wave
Alpha particle track in a cloud chamber AlphaTrackRutherfordScattering3.jpg
Alpha particle track in a cloud chamber

As Mott says, "it is a little difficult to picture how it is that an outgoing spherical wave can produce a straight track; we think intuitively that it should ionise atoms at random throughout space". This issue became known at the Mott problem. Mott then derives the straight track by considering correlations between the positions of the source and two representative atoms, showing that consecutive ionization results from just that state in which all three positions are co-linear. [7]

Relative to classical phase space

Classical mechanics for multiple objects describes their motion in terms of a list or vector of every object's coordinates and velocity. As the objects move, the values in the vector change; the set of all possible values is called a phase space. [8] :88 In quantum mechanics a state space is similar, however in the state space two vectors which are scalar multiples of each other represent the same state. Furthermore, the character of values in the quantum state differ from the classical values: in the quantum case the values can only be measured statistically (by repetition over many examples) and thus do not have well defined values at every instant of time. [5] :294

See also

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a quantum system. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Quantum superposition</span> Principle of quantum mechanics

Quantum superposition is a fundamental principle of quantum mechanics. In classical mechanics, things like position or momentum are always well-defined. It may not be known what they are at any given time, but that is an issue of understanding and not an issue of the physical system. A quantum system interacts in ways that can be explained with superposition of different discrete states. Measurements of quantum systems give a statistical result corresponding to any one of the possible states appearing at random.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum jumps supplanted the Bohr model's electron orbits. It did so by interpreting the physical properties of particles as matrices that evolve in time. It is equivalent to the Schrödinger wave formulation of quantum mechanics, as manifest in Dirac's bra–ket notation.

<span class="mw-page-title-main">Probability amplitude</span> Complex number whose squared absolute value is a probability

In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.

<span class="mw-page-title-main">Relativistic wave equations</span> Wave equations respecting special and general relativity

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.

<span class="mw-page-title-main">Stern–Gerlach experiment</span> 1922 physical experiment demonstrating that atomic spin is quantized

In quantum physics, the Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent through a spatially-varying magnetic field, which deflected them before they struck a detector screen, such as a glass slide. Particles with non-zero magnetic moment were deflected, owing to the magnetic field gradient, from a straight path. The screen revealed discrete points of accumulation, rather than a continuous distribution, owing to their quantized spin. Historically, this experiment was decisive in convincing physicists of the reality of angular-momentum quantization in all atomic-scale systems.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is:

<span class="mw-page-title-main">Spin-1/2</span> Type of matter

In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns before it has the same configuration as when it started.

A first quantization of a physical system is a possibly semiclassical treatment of quantum mechanics, in which particles or physical objects are treated using quantum wave functions but the surrounding environment is treated classically.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be conceptualized as involving the "rotation" of a particle's "internal mass", as ordinary use of the word may suggest: spin is a quantized property of waves.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state, and the quantum mechanical rules for the system's evolution in time, exhausts all that can be known about a quantum system.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

References

  1. McIntyre, David (2012). Quantum Mechanics: A Paradigms Approach (1st ed.). Pearson. ISBN   978-0321765796.
  2. Bengtsson, Ingemar; Życzkowski, Karol (2017). Geometry of Quantum States (2nd ed.). Cambridge University Press. ISBN   978-1139207010.
  3. Schiff, Leonard (1949). Quantum mechanics. McGraw-Hill.
  4. Susskind, Leonard; Friedman, Art; Susskind, Leonard (2014). Quantum mechanics: the theoretical minimum; [what you need to know to start doing physics]. The theoretical minimum / Leonard Susskind and George Hrabovsky. New York, NY: Basic Books. ISBN   978-0-465-06290-4.
  5. 1 2 Messiah, Albert (1966). Quantum Mechanics. North Holland, John Wiley & Sons. ISBN   0486409244.
  6. "The wave mechanics of ∝-Ray tracks". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 126 (800): 79–84. 1929-12-02. doi: 10.1098/rspa.1929.0205 . ISSN   0950-1207.
  7. Figari, Rodolfo; Teta, Alessandro (2013). "Emergence of classical trajectories in quantum systems: the cloud chamber problem in the analysis of Mott (1929)". Archive for History of Exact Sciences. 67 (2): 215–234. arXiv: 1209.2665 . doi:10.1007/s00407-012-0111-z. ISSN   0003-9519.
  8. Susskind, Leonard; Hrabovsky, George; Susskind, Leonard (2014). The theoretical minimum: what you need to know to start doing physics. The theoretical minimum / Leonard Susskind and George Hrabovsky (Paperback 1. publ ed.). New York: Basic Books. ISBN   978-0-465-07568-3.

Further reading