Allyl cyanide

Last updated
Allyl cyanide
AllylcyanideExplicit.png
Allyl cyanide 3D ball.png
Names
Preferred IUPAC name
But-3-enenitrile
Identifiers
3D model (JSmol)
605352
ChEBI
ChemSpider
ECHA InfoCard 100.003.366 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-701-1
PubChem CID
UNII
  • Key: SJNALLRHIVGIBI-UHFFFAOYSA-N
  • C=CCC#N
Properties
C4H5N
Molar mass 67.091 g·mol−1
Appearancecolourless liquid
Density 0.834 g/cm3 [1]
Melting point −87 °C (−125 °F; 186 K)
Boiling point 116 to 121 °C (241 to 250 °F; 389 to 394 K) [1]
Hazards
Main hazards Flammable, poison, irritates skin and eyes
Safety data sheet (SDS) MSDS
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg
Danger
H226, H301, H311, H312, H315, H319
P261, P280, P301+P310, P305+P351+P338, P311
NFPA 704 (fire diamond)
4
3
0
Ingestion hazard Toxic if swallowed.
Inhalation hazard May be fatal if inhaled. Causes respiratory tract irritation.
Eye hazard Causes eye irritation.
Skin hazard Causes skin irritation.
Flash point 24 °C (75 °F; 297 K) [1]
455 °C (851 °F; 728 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Allyl cyanide is an organic compound with the formula CH2CHCH2CN. Like other small alkyl nitriles, allyl cyanide is colorless and soluble in organic solvents. Allyl cyanide occurs naturally as an antifeedant and is used as a cross-linking agent in some polymers. [2]

Contents

Synthesis

Allyl cyanide is obtained by the reaction of allyl acetate with hydrogen cyanide. [2]

A laboratory route to allyl cyanide involves treating allyl bromide with copper(I) cyanide. [3]

CH2=CHCH2Br + CuCN → CH2=CHCH2CN + CuBr

Other allyl halides may be used for this reaction including allyl iodide as done by A. Rinne and B. Tollens in 1871 where iodide is a better leaving group than its bromide equivalent and therefore increases the yield. [4]

Natural occurrences

Allyl cyanide was discovered in 1863 by H. Will and W. Koerner in 1863, they found the compound to be present in mustard oil. [5] The first synthesis of allyl cyanide was reported by A. Claus in 1864. [6]

Allyl cyanide is produced in cruciferous vegetables by myrosinase, an enzyme which hydrolyses glucosinolates to form nitriles and other products. [7] Myrosinase is activated by l-ascorbic acid (vitamin C) under the influence of the pH, [8] and higher myrosinase activity has been shown in damaged cabbage leaves, while its activity is reduced by cooking the leaves, although the glucosinolates can then be transformed to allyl cyanide by microflora in the intestines. [9] As cruciferous vegetables like cabbage, broccoli, cauliflower and sprouts are part of the human diet, allyl cyanide is normally consumed orally. The normal dose of allyl cyanide contained in a meal is shown to be much lower than the doses used in animal studies. [7] The daily level at which behavioural effects were demonstrated is 500 μg/kg bodyweight, whereas the daily human consumption amounts to 0.12 μg/kg. Although the dose-response relationship is still to be examined, it is therefore thought that allyl cyanide has no potency as a neurotoxicant when consumed in vegetables.

Applications

Allyl cyanide may be used as an additive in propylene carbonate-based electrolytes for graphite anodes preventing exfoliation of the anode by film-forming. The underlying mechanism is thought to be a reductive polymerization mechanism. [10]

Neurotoxicity

Studies performed on rats showed that allyl cyanide cause loss of hair cells in the auditory system and troubling of the cornea. [11] The same study also showed that the rearing activity of rats was reduced by oral ingestion of allyl cyanide. It has these neurotoxic symptoms in common with other aliphatic mononitriles such as 2-butenenitrile and 3,3'-iminopropionitrile. Allyl cyanide was also shown to cause a swelling of the axons. [12] Studies done with mice showed that a single (albeit rather high) dose of allyl cyanide can cause permanent behavioural changes. [13] These changes include twitching of the head, an increased locomotor activity and circling. These mice were furthermore shown to suffer from neuronal contractions, possibly leading to cell death. Sheep are far more tolerant to the toxic effects of allyl cyanide than rats. Studies suggest that this detoxification is due to the predigestion in the rumen. [14]

Toxicokinetics

Allyl cyanide is known to be metabolized in the liver by the Cytochrome P-450 enzyme system (mainly CYP2E1) to cyanide. [15] The absorption and distribution of allyl cyanide in rats is extraordinary fast. The highest concentrations of allyl cyanide were measured in the stomach tissue and stomach contents due to the fact that the stomach is the principal site of absorption after oral administration. The next highest concentration levels were found to be in the bone marrow with a peak in concentration between 0 and 3 hours after administration. The liver, kidneys, spleen and lungs also accumulated allyl cyanide over the course of 48 hours. The highest concentration in the kidney was observed between 3 and 6 hr after dosing. This observation indicates rapid elimination of allyl cyanide. The major route of detoxification is the conversion from cyanide to thiocyanate. [16] Major routes of excretion are through the urine and expired air.

The serotonin and dopamine systems are thought to be involved in the behavioral abnormalities caused by allyl cyanide. Treatment by serotonin and dopamine antagonists caused a reduction in the behavioral abnormalities. [17] Ataxia, trembling, convulsions, diarrhea, salivation, lacrimation and irregular breathing are known effects that are caused by oral ingestion of allyl cyanide.

Related Research Articles

Hermann Kolbe

Adolph Wilhelm Hermann Kolbe was a major contributor to the birth of modern organic chemistry. He was a professor at Marburg and Leipzig. Kolbe was the first to apply the term synthesis in a chemical context, and contributed to the philosophical demise of vitalism through synthesis of the organic substance acetic acid from carbon disulfide, and also contributed to the development of structural theory. This was done via modifications to the idea of "radicals" and accurate prediction of the existence of secondary and tertiary alcohols, and to the emerging array of organic reactions through his Kolbe electrolysis of carboxylate salts, the Kolbe-Schmitt reaction in the preparation of aspirin and the Kolbe nitrile synthesis. After studies with Wöhler and Bunsen, Kolbe was involved with the early internationalization of chemistry through work in London. He was elected to the Royal Swedish Academy of Sciences, and won the Royal Society of London's Davy Medal in the year of his death. Despite these accomplishments and his training important members of the next generation of chemists, Kolbe is best remembered for editing the Journal für Praktische Chemie for more than a decade, in which his vituperative essays on Kekulé's structure of benzene, van't Hoff's theory on the origin of chirality and Baeyer's reforms of nomenclature were personally critical and linguistically violent. Kolbe died of a heart attack in Leipzig at age 68, six years after the death of his wife, Charlotte. He was survived by four children.

A nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

Benzoin condensation

The benzoin addition is an addition reaction involving two aldehydes. The reaction generally occurs between aromatic aldehydes or glyoxals. The reaction produces an acyloin. In the classic application benzaldehyde is converted to benzoin.

The Fritsch–Buttenberg–Wiechell rearrangement, named for Paul Ernst Moritz Fritsch (1859–1913), Wilhelm Paul Buttenberg, and Heinrich G. Wiechell, is a chemical reaction whereby a 1,1-diaryl-2-bromo-alkene rearranges to a 1,2-diaryl-alkyne by reaction with a strong base such as an alkoxide.

Carl Harries German chemist

Carl Dietrich Harries was a German chemist born in Luckenwalde, Brandenburg, Prussia. He received his doctorate in 1892. In 1900, he married Hertha von Siemens, daughter of the electrical genius Werner von Siemens, and the inventor of one of the earliest ozone generators. In 1904, he moved as full professor to the University of Kiel, where he remained until 1916. During that time he published numerous papers on ozonolysis. His major publication detailing ozonolysis was published in Liebigs Ann. Chem. 1905, 343, 311. Dissatisfied with academic life and having failed to obtain either of two positions at universities, he left academia to become Director of Research at Siemens and Halske. He died on 3 November 1923 of complications following surgery for cancer.

Glucosinolate

Glucosinolates are natural components of many pungent plants such as mustard, cabbage, and horseradish. The pungency of those plants is due to mustard oils produced from glucosinolates when the plant material is chewed, cut, or otherwise damaged. These natural chemicals most likely contribute to plant defence against pests and diseases, and impart a characteristic bitter flavor property to cruciferous vegetables.

Chloral, also known as trichloroacetaldehyde or trichloroethanal, is the organic compound with the formula Cl3CCHO. This aldehyde is a colourless oily liquid that is soluble in a wide range of solvents. It reacts with water to form chloral hydrate, a once widely used sedative and hypnotic substance.

Wilhelm Rudolph Fittig German chemist

Wilhelm Rudolph Fittig was a German chemist. Fittig discovered the pinacol coupling reaction, mesitylene, diacetyl and biphenyl. He studied the action of sodium on ketones and hydrocarbons. He discovered the Fittig reaction or Wurtz–Fittig reaction for the synthesis of alkylbenzenes, he proposed a diketone structure for benzoquinone and isolated phenanthrene from coal tar. He discovered and synthesized the first lactones and investigated structures of piperine naphthalene and fluorene.

Crotonic acid Chemical compound

Crotonic acid ((2E)-but-2-enoic acid) is a short-chain unsaturated carboxylic acid, described by the formula CH3CH=CHCO2H. It is called crotonic acid because it was erroneously thought to be a saponification product of croton oil. It crystallizes as colorless needles from hot water. The cis-isomer of crotonic acid is called isocrotonic acid. Crotonic acid is soluble in water and many organic solvents. Its odor is similar to butyric acid.

The Lossen rearrangement is the conversion of a hydroxamate ester to an isocyanate. Typically O-acyl, sulfonyl, or phosphoryl O-derivative are employed. The isocyanate can be used further to generate ureas in the presence of amines or generate amines in the presence of H2O.

Myrosinase

Myrosinase is a family of enzymes involved in plant defense against herbivores, specifically the mustard oil bomb. The three-dimensional structure has been elucidated and is available in the PDB.

Otto Dimroth

Otto Dimroth was a German chemist. He is known for the Dimroth rearrangement, as well as a type of condenser with an internal double spiral, the Dimroth condenser.

Adolph Strecker German chemist

Adolph Strecker was a German chemist who is remembered primarily for his work with amino acids.

Jakob Meisenheimer

Jakob Meisenheimer was a German chemist. He made numerous contributions to organic chemistry, the most famous being his proposed structure for a group of compounds now named Meisenheimer complex. He also proposed the mechanism of the Beckmann rearrangement. Later in his career, he reported the synthesis of the pyridine-N-oxide.

Rosenmund–von Braun reaction

The Rosenmund–von Braun synthesis is an organic reaction in which an aryl halide reacts with cuprous cyanide to yield an aryl nitrile.

The Dimroth rearrangement is a rearrangement reaction taking place with certain 1,2,3-triazoles where endocyclic and exocyclic nitrogen atoms switch place. This organic reaction was discovered in 1909 by Otto Dimroth.

Piprozolin

Piprozolin is a medication for bile therapy.

Methyl isocyanide Chemical compound

Methyl isocyanide or isocyanomethane is an organic compound and a member of the isocyanide family. This colorless liquid is isomeric to methyl cyanide (acetonitrile), but its reactivity is very different. In contrast to the faintly sweet, ethereal odor of acetonitrile, the smell of methyl isocyanide, like that of other simple volatile isocyanides, is distinctly penetrating and vile. Methyl isocyanide is mainly used for making 5-membered heterocyclic rings. The C-N distance in methyl isocyanide is very short, 1.158 Å as is characteristic of isocyanides.

Conhydrine Chemical compound

Conhydrine is a poisonous alkaloid found in poison hemlock in small quantities.

5-Aminotetrazole Chemical compound

5-Aminotetrazole is an organic compound with the formula HN4CNH2. It is a white solid that can be obtained both in anhydrous and hydrated forms.

References

  1. 1 2 3 4 MSDS
  2. 1 2 Ludger Krähling; Jürgen Krey; Gerald Jakobson; Johann Grolig; Leopold Miksche (2002). "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_425.
  3. J. V. Supniewski; P. L. Salzberg (1928). "Allyl Cyanide". Org. Synth. 8: 4. doi:10.15227/orgsyn.008.0004.
  4. A. Rinne, B. Tollens: "Ueber das Allylcyanür oder Crotonitril", in: Justus Liebigs Annalen der Chemie, 1871, 159 (1), S. 105–109; doi:10.1002/jlac.18711590110
  5. C. Pomeranz: "Ueber Allylcyanid und Allylsenföl", in: Justus Liebigs Annalen der Chemie, 1906, 351 (1–3), P. 354–362: doi:10.1002/jlac.19073510127
  6. A. Claus: "Ueber Crotonsäure", in: Justus Liebigs Annalen der Chemie, 1864, 131 (1), P. 58–66;doi:10.1002/jlac.18641310106
  7. 1 2 H. Tanii et al. Allylnitrile: generation from cruciferous vegetables and behavioral effects on mice of repeated exposure / Food and Chemical Toxicology, 42, (2004), 453-458
  8. L.G. West et al. Allyl Isothiocyanate and Allyl Cyanide Production in Cell-Free Cabbage Leaf Extracts, Shredded Cabbage, and Cole Slaw / J. Agric. Food Chem. Vol. 25, No. 6, (1997), 1234-1238
  9. C. Krul et al. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model / Carcinogenesis, Vol. 24, No. 6, (2002), 1009-1016
  10. L. Zhang et al. Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries Iconics August 2013, Volume 19, Issue 8, pp 1099-1103
  11. E. Balbuena, J. Llorens Behavioural disturbances and sensory pathology following allylnitrile exposure in rats / Brain Research 904 (2001) 298-306
  12. C. Soler-Martín et al. Butenenitriles have low axonopathic potential in the rat / Toxicology Letters 200 (2011) 187-193
  13. Xiao-ping Zang et al. Behavioral abnormalities and apoptotic changes in neurons in mice brain following a single administration of allylnitrile / Arch Toxicol 73 (1999) 22-32
  14. Duncan, A. J. and Milne, J. A. (1992), Rumen microbial degradation of allyl cyanide as a possible explanation for the tolerance of sheep to brassica-derived glucosinolates. J. Sci. Food Agric., 58: 15–19.
  15. A. E. Ahmed and M. Y. H. Farooqui: Comparative toxicities of aliphatic nitriles. Toxicol. Len. 12, 157-163 (1982)
  16. E. Ahmed, M. Y. H. Farooqui, and N. M. Tneff: Nitriles. In:"Biotransformation of Foreign Compounds" (M. W. Anders, ed), pp. 485-510. Academic Press, New York, 1985.
  17. H. Tanii, Y. Kurosaka, M. Hayashi, and K. Hashimoto: Allylnitrile: a compound which induces long-term dyskinesia in mice following a single administration. Exp. Neurol. 103, 64-67 (1989)