Ambient ionization

Last updated
Diagram of ambient ionization in mass spectrometry indicating desorption/extraction (spray, heat, laser), optional post-ionization (electrospray, chemical ionization, plasma), ion formation, and entry into the vacuum of the mass spectrometer. Ambient Ionization Diagram.jpg
Diagram of ambient ionization in mass spectrometry indicating desorption/extraction (spray, heat, laser), optional post-ionization (electrospray, chemical ionization, plasma), ion formation, and entry into the vacuum of the mass spectrometer.

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. [1] [2] [3] [4] Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer. [5]

Contents

Solid-liquid extraction

Schematic of a DESI solid-liquid extraction ion source: primary charged droplets hit the sample surface and molecules are extracted into the liquid. Secondary charged droplets removed from the surface produce bare ions as the solvent evaporates. DESI ion source.jpg
Schematic of a DESI solid-liquid extraction ion source: primary charged droplets hit the sample surface and molecules are extracted into the liquid. Secondary charged droplets removed from the surface produce bare ions as the solvent evaporates.

Solid-liquid extraction based ambient ionization is based on the use of a charged spray, for example electrospray to create a liquid film on the sample surface. [3] [6] Molecules on the surface are extracted into the solvent. The action of the primary droplets hitting the surface produces secondary droplets that are the source of ions for the mass spectrometer.

Desorption electrospray ionization (DESI) is one of the original ambient ionization sources [7] and uses an electrospray source to create charged droplets that are directed at a solid sample. The charged droplets pick up the sample through interaction with the surface and then form highly charged ions that can be sampled into a mass spectrometer. [8]

Desorption atmospheric pressure photoionization (DAPPI) is a solid-liquid extraction ambient ionization method that enables the direct analysis of samples deposited on surfaces by means of a jet of hot solvent vapour and ultraviolet light. The hot jet thermally desorbs the sample from a surface and the vaporized sample is ionized by a vacuum ultraviolet light and consequently sampled into a mass spectrometer. [9]

Plasma-based techniques

Plasma-based ambient ionization is based on an electrical discharge in a flowing gas that produces metastable atoms and molecules and reactive ions. Heat is often used to assist in the desorption of volatile species from the sample. Ions are formed by chemical ionization in the gas phase.

One proposed mechanism involves Penning ionization of ambient water clusters in a helium discharge:

.

The protonated water clusters can then protonate the sample molecules via

.

For this ionization pathway, the gas-phase acidity of the protonated water clusters and the gas-phase basicity of the analyte molecule are of crucial importance. However, since especially smaller protonated water clusters with n = 1,2,3... exhibit very high gas-phase acidities, even compounds with a rather low gas-phase basicity are readily ionized by proton transfer, yielding [M+H]+ quasimolecular ions. [10] [11]

Besides protonated water clusters, other positively charged reagent ions, such as NO+, O2+, NO2+ and CO2+, may be formed in the afterglow region. [10] [11] [12] [13] These additional reagent ions are capable of ionizing compounds via charge-transfer processes and, thus, offer alternative routes of ionization besides proton transfer, leading to a broader range of suitable analytes. Nevertheless, these ionization mechanisms may also lead to the formation of adducts and oxidation of the original analyte compounds. [11]

Although most applications focus on the detection of positive ions, measurements in the negative mode are for most of the plasma-based ion sources also possible. In this case, reagent ions, such as O2, can deprotonate the analyte molecules to give [M–H] quasimolecular ions, or form adducts with species such as NO3, yielding [M+NO3] ions. [11] [13] Measurements in the negative ion mode are especially favorable when the analyte molecules exhibit a high gas-phase acidity, as it is the case e.g. for carboxylic acids.

A direct analysis in real time (DART) metastable ion source for plasma based ambient ionization. DART schematic small.png
A direct analysis in real time (DART) metastable ion source for plasma based ambient ionization.

One of the most used plasma-based techniques for ambient ionization is probably Direct analysis in real time (DART), since it is commercially available. DART is an atmospheric pressure ion source that operates by exposing the sample to a gas stream (typically helium or nitrogen) that contains long-lived electronically or excited neutral atoms, vibronically excited molecules (or "metastables"). Excited states are formed in a glow discharge in a chamber through which the gas flows. [14]

Laser assisted

Ion source for ambient mass spectrometry employing a combination of laser desorption and electrospray. The sample target is on the left. IRLDESI Side View.jpg
Ion source for ambient mass spectrometry employing a combination of laser desorption and electrospray. The sample target is on the left.

Laser-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray or plasma to create ions. Lasers with ultraviolet and infrared wavelengths and nanosecond to femtosecond pulse widths have been used. Although atmospheric pressure MALDI is performed under ambient conditions, [15] it is not generally considered to be an ambient mass spectrometry technique. [16] [17]

Laser ablation was first coupled with mass spectrometry in the 1980s for the analysis of metals using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). [18] The laser ablates the sample material that is introduced into an ICP to create atomic ions.

Probe electrospray ionization schematic Probe electrospray ionization (schematic).png
Probe electrospray ionization schematic

Infrared laser desorption can be coupled with atmospheric pressure chemical ionization using laser desorption atmospheric pressure chemical ionization (LD-APCI). [19] For ambient ionization with a spray, the sample material is deposited on a target near the spray. The laser desorbs or ablates material from the sample that is ejected from the surface and into the spray, which can be an APCI spray with a corona discharge or an electrospray. Ambient ionization by electrospray-assisted laser desorption/ionization (ELDI) can be accomplished with ultraviolet [20] and infrared lasers [21] to the desorb material into the electrospray plume. Similar approaches to laser desorption/ablation into an electrospray are matrix-assisted laser desorption electrospray ionization (MALDESI), [22] laser ablation electrospray ionization (LAESI), [23] laser assisted desorption electrospray ionization (LADESI), [24] laser desorption electrospray ionization (LDESI), [25] [26] laser ablation mass spectrometry (LAMS), [27] and laser desorption spray post-ionization (LDSPI). [28] The term laser electrospray mass spectrometry has been used to denote the use of a femtosecond laser for ablation. [29] [30] Laser ablation into an electrospray produces highly charged ions that are similar to those observed in direct electrospray.

An alternative ionization approach following laser desorption is a plasma. UV laser ablation can be combined with a flowing afterglow plasma for mass spectrometry imaging of small molecules. [31] and IR desorption has been combined with a metastable ion source. [32]

Two step non-laser

In two-step non-laser methods, the material removal from the sample and the ionization steps are separate.

Probe electrospray ionization (PESI) is a modified version of conventional electrospray ionization in which the capillary for sample solution transferring is replaced by a solid needle with a sharp tip. [33] Compared with conventional electrospray ionization, high salt tolerance, direct sampling, and low sample consumption are found with PESI. PESI is not a continuous process; the needle for sampling and spraying is driven up and down at a frequency of 3–5 Hz.

Vapor-ion, charge transfer reaction

The analytes are in the vapor phase. This includes breath, odors, VOCs, and other molecules with low volatility that, due to the constant improvements in sensitivity, are detectable in the vapor phase despite their low vapor pressure. Analyte ions are produced via gas-phase chemical reactions, where charging agents collide with the analyte molecules and transfer their charge. In secondary electro-spray ionization (SESI), a nano-electrospray operated at high temperature produces nanodroplets that evaporate very rapidly to produce ions and protonated water clusters that ionize the vapors of interest. SESI is commonly used for the analysis of trace concentrations of vapors being able to detect low volatility species in the gas phase with molecular masses of up to 700 Da.

Table of techniques

In the table below, ambient ionization techniques are classified in the categories "extraction" (a solid or liquid extraction processes dynamically followed by spray or chemical ionization), "plasma" (thermal or chemical desorption with chemical ionization), "two step" (desorption or ablation followed by ionization), "laser" (laser desorption or ablation followed by ionization), "acoustic" (acoustic desorption followed by ionization), multimode (involving two of the above modes), other (techniques that do not fit into the other categories). [3]

AcronymTechniqueClassification
AFAI [34] Air flow-assisted ionizationExtraction
AFADESI [35] Air flow-assisted desorption electrospray ionizationExtraction
APGDDI [36] Atmospheric pressure glow discharge desorption ionizationPlasma
APPIS [37] Ambient pressure pyroelectric ion source
APTDCI [38] Atmospheric pressure thermal desorption chemical ionizationTwo-step
APTDI [39] Atmospheric pressure thermal desorption/ionizationPlasma
ASAP [40] Atmospheric pressure solids analysis probePlasma
BADCI [41] Beta electron-assisted direct chemical ionizationTwo step
CALDI [42] Charge assisted laser desorption/ionizationLaser
DAPCI [43] Desorption atmospheric pressure chemical ionizationPlasma
DAPPI [44] Desorption atmospheric pressure photoionizationExtraction
DART [45] Direct analysis in real time Plasma
DBDI [46] Dielectric barrier discharge ionizationPlasma
DCBI [46] Desorption corona beam ionizationPlasma
DCIDesorption chemical ionizationPlasma
DEFFI [47] Desorption electro-flow focusing ionizationExtraction
DEMI [48] Desorption electrospray/metastable-induced ionizationMultimode
DESI [7] Desorption electrospray ionization Extraction
DeSSI [49] Desorption sonic spray ionizationExtraction
DICE [50] Desorption ionization by charge exchangeExtraction
DIP-APCI [51] Direct inlet probe–atmospheric-pressure chemical ionizationTwo-step
DPESI [52] Direct probe electrospray ionization
EADESI [53] Electrode-assisted desorption electrospray ionizationExtraction
EASI [54] Easy ambient sonic-spray ionizationExtraction
EESI [55] Extractive electrospray ionization Two step
ELDI [56] Electrospray laser desorption ionizationLaser
ESA-Py [57] Electrospray-assisted pyrolysis ionizationSpray
ESTASI [58] Electrostatic spray ionizationExtraction
FAPA [12] Flowing atmospheric pressure afterglowPlasma
FIDI [59] Field-induced droplet ionization
HALDI [60] High-voltage-assisted laser desorption ionizationLaser
HAPGDI [12] Helium atmospheric pressure glow discharge ionizationPlasma
IR-LAMICI [32] Infrared laser ablation metastable-induced chemical ionizationLaser
JeDI [61] Jet desorption electrospray ionizationExtraction
LADESI [24] Laser assisted desorption electrospray ionizationLaser
LAESI [62] Laser ablation electrospray ionization Laser
LA-FAPA [31] Laser ablation flowing atmospheric pressure afterglowLaser
LA-ICP [63] Laser ablation inductively coupled plasmaLaser
LD-APCI [19] Laser desorption atmospheric pressure chemical ionizationLaser
LDTD [64] Laser diode thermal desorptionLaser
LDESI [25] [26] Laser desorption electrospray ionizationLaser
LDSPI [28] Laser desorption spray post-ionizationLaser
LEMS [30] Laser electrospray mass spectrometryLaser
LESA [65] Liquid extraction surface analysisExtraction
LIAD-ESI [66] Laser-induced acoustic desorption-electrospray ionizationAcoustic
LMJ-SSP [67] Liquid microjunction-surface sampling probeExtraction
LPTD [68] Leidenfrost phenomenon-assisted thermal desorptionTwo-step
LS-APGD [69] Liquid sampling-atmospheric pressure glow dischargePlasma
LSI [70] Laser spray ionizationOther
LTP [71] Low temperature plasmaPlasma
MAII [72] Matrix-assisted inlet ionizationOther
MALDESI [73] Matrix-assisted laser desorption electrospray ionization Laser
MFGDP [74] Microfabricated glow discharge plasmaPlasma
MIPDI [75] microwave induced plasma desorption ionizationPlasma
nano-DESI [76] Nanospray desorption electrospray ionizationExtraction
ND-EESI [77] Neutral desorption extractive electrospray ionizationTwo step
PADI [78] Plasma-assisted desorption ionizationPlasma
Paint Spray* [79] Paint sprayExtraction
PALDI [80] Plasma-assisted laser desorption ionizationLaser
PAMLDI [81] Plasma-assisted multiwavelength laser desorption ionizationLaser
PASIT [82] Plasma-based ambient sampling/ionization/transmissionExtraction
PAUSI [83] Paper assisted ultrasonic spray ionization
PESI [84] Probe electrospray ionizationTwo step
PS [85] Paper spray
PTC-ESI [86] Pipette tip column electrospray ionizationExtraction
RADIO [87] Radiofrequency acoustic desorption and ionizationAcoustic
RASTIR [88] Remote analyte sampling transport and ionization relay
REIMS [89] Rapid evaporative ionization mass spectrometryOther
RoPPI [90] Robotic plasma probe ionizationTwo-step
SACI [91] Surface activated chemical ionization
SAII [92] Solvent-assisted inlet ionizationOther
SAWN [93] Surface acoustic wave nebulizationAcoustic
SESI [94] Secondary electrospray ionization Vapor-ion, charge transfer
SPA-nanoESI [95] Solid probe assisted nanoelectrospray ionizationTwo-step
SPAMS [96] Single-particle aerosol mass spectrometryOther
SSI [97] Sponge-Spray Ionization
SSP [98] Surface sampling probeExtraction
SwiFerr [99] Switched ferroelectric plasma ionizerOther
TDAMS [100] Thermal desorption-based ambient mass spectrometrySpray
TM-DESI [101] Transmission mode desorption electrospray ionizationExtraction
TS [102] Touch sprayTwo-step
UASI [103] Ultrasonication-assisted spray ionizationAcoustic
V-EASI [104] Venturi easy ambient sonic-spray ionizationExtraction
BS [105] Brush-Spray IonizationTwo-step
FS [106] Fiber-Spray IonizationExtraction

(*) Not an acronym.

Table of commercially available ambient ionization sources

TechniqueCommercial BrandCompanyWebsite
Ambient Pressure Photo Ionization (APPI)MasCom

GC-(APPI)

MasCom Technologies GmbH https://www.mascom-bremen.de/
Atmospheric pressure solids analysis probe (ASAP)RADIANWaters, USA https://www.waters.com/
Desorption Electrospray Ionization (DESI)DESI2DProsolia Inc, Indianapolis, IN https://prosolia.com/
Direct Analysis in Real Time (DART)DARTIonSense Inc, Saugus, MA https://www.ionsense.com/
Liquid Extraction Surface Analysis (LESA)TriVersaNanoMateAdvion, Ithaca, NY https://advion.com/
Probe Electrospray Ionization (PESI)DPiMS-8060Shimadzu, Japan https://www.shimadzu.com/
Rapid evaporative Ionization Mass Spectrometry (REIMS)REIMSWaters, USA https://www.waters.com/
Secondary Electrospray Ionization (SESI)SUPER SESIFossil Ion Technology, Spain https://www.fossiliontech.com/
Soft Ionization by Chemical Reaction In Transfer (SICRIT)SICRITPlasmion GmbH, Germany https://plasmion.com/

Related Research Articles

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Electrospray ionization</span> Technique used in mass spectroscopy

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

In mass spectrometry, direct analysis in real time (DART) is an ion source that produces electronically or vibronically excited-state species from gases such as helium, argon, or nitrogen that ionize atmospheric molecules or dopant molecules. The ions generated from atmospheric or dopant molecules undergo ion-molecule reactions with the sample molecules to produce analyte ions. Analytes with low ionization energy may be ionized directly. The DART ionization process can produce positive or negative ions depending on the potential applied to the exit electrode.

<span class="mw-page-title-main">Thermospray</span>

Thermospray is a soft ionization source by which a solvent flow of liquid sample passes through a very thin heated column to become a spray of fine liquid droplets. As a form of atmospheric pressure ionization in mass spectrometry these droplets are then ionized via a low-current discharge electrode to create a solvent ion plasma. A repeller then directs these charged particles through the skimmer and acceleration region to introduce the aerosolized sample to a mass spectrometer. It is particularly useful in liquid chromatography-mass spectrometry (LC-MS).

<span class="mw-page-title-main">Desorption electrospray ionization</span>

Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems allow for chemical determinations of samples. DESI employs a fast-moving charged solvent stream, at an angle relative to the sample surface, to extract analytes from the surfaces and propel the secondary ions toward the mass analyzer. This tandem technique can be used to analyze forensics analyses, pharmaceuticals, plant tissues, fruits, intact biological tissues, enzyme-substrate complexes, metabolites and polymers. Therefore, DESI-MS may be applied in a wide variety of sectors including food and drug administration, pharmaceuticals, environmental monitoring, and biotechnology.

Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.

<span class="mw-page-title-main">Laser spray ionization</span>

Laser spray ionization refers to one of several methods for creating ions using a laser interacting with a spray of neutral particles or ablating material to create a plume of charged particles. The ions thus formed can be separated by m/z with mass spectrometry. Laser spray is one of several ion sources that can be coupled with liquid chromatography-mass spectrometry for the detection of larger molecules.

<span class="mw-page-title-main">Matrix-assisted laser desorption electrospray ionization</span>

Matrix-assisted laser desorption electrospray ionization (MALDESI) was first introduced in 2006 as a novel ambient ionization technique which combines the benefits of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). An infrared (IR) or ultraviolet (UV) laser can be utilized in MALDESI to resonantly excite an endogenous or exogenous matrix. The term 'matrix' refers to any molecule that is present in large excess and absorbs the energy of the laser, thus facilitating desorption of analyte molecules. The original MALDESI design was implemented using common organic matrices, similar to those used in MALDI, along with a UV laser. The current MALDESI source employs endogenous water or a thin layer of exogenously deposited ice as the energy-absorbing matrix where O-H symmetric and asymmetric stretching bonds are resonantly excited by a mid-IR laser.

<span class="mw-page-title-main">Desorption atmospheric pressure photoionization</span>

Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry that uses hot solvent vapor for desorption in conjunction with photoionization. Ambient Ionization techniques allow for direct analysis of samples without pretreatment. The direct analysis technique, such as DAPPI, eliminates the extraction steps seen in most nontraditional samples. DAPPI can be used to analyze bulkier samples, such as, tablets, powders, resins, plants, and tissues. The first step of this technique utilizes a jet of hot solvent vapor. The hot jet thermally desorbs the sample from a surface. The vaporized sample is then ionized by the vacuum ultraviolet light and consequently sampled into a mass spectrometer. DAPPI can detect a range of both polar and non-polar compounds, but is most sensitive when analyzing neutral or non-polar compounds. This technique also offers a selective and soft ionization for highly conjugated compounds.

<span class="mw-page-title-main">Laser ablation electrospray ionization</span>

Laser ablation electrospray ionization (LAESI) is an ambient ionization method for mass spectrometry that combines laser ablation from a mid-infrared (mid-IR) laser with a secondary electrospray ionization (ESI) process. The mid-IR laser is used to generate gas phase particles which are then ionized through interactions with charged droplets from the ESI source. LAESI was developed in Professor Akos Vertes lab by Peter Nemes in 2007 and it was marketed commercially by Protea Biosciences, Inc until 2017. Fiber-LAESI for single-cell analysis approach was developed by Bindesh Shrestha in Professor Vertes lab in 2009. LAESI is a novel ionization source for mass spectrometry (MS) that has been used to perform MS imaging of plants, tissues, cell pellets, and even single cells. In addition, LAESI has been used to analyze historic documents and untreated biofluids such as urine and blood. The technique of LAESI is performed at atmospheric pressure and therefore overcomes many of the obstacles of traditional MS techniques, including extensive and invasive sample preparation steps and the use of high vacuum. Because molecules and aerosols are ionized by interacting with an electrospray plume, LAESI's ionization mechanism is similar to SESI and EESI techniques.

<span class="mw-page-title-main">Atmospheric-pressure photoionization</span> Soft ionization method

Atmospheric pressure photoionization (APPI) is a soft ionization method used in mass spectrometry (MS) usually coupled to liquid chromatography (LC). Molecules are ionized using a vacuum ultraviolet (VUV) light source operating at atmospheric pressure, either by direct absorption followed by electron ejection or through ionization of a dopant molecule that leads to chemical ionization of target molecules. The sample is usually a solvent spray that is vaporized by nebulization and heat. The benefit of APPI is that it ionizes molecules across a broad range of polarity and is particularly useful for ionization of low polarity molecules for which other popular ionization methods such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are less suitable. It is also less prone to ion suppression and matrix effects compared to ESI and APCI and typically has a wide linear dynamic range. The application of APPI with LC/MS is commonly used for analysis of petroleum compounds, pesticides, steroids, and drug metabolites lacking polar functional groups and is being extensively deployed for ambient ionization particularly for explosives detection in security applications.

<span class="mw-page-title-main">Desorption/ionization on silicon</span> Soft laser desorption method

Desorption/ionization on silicon (DIOS) is a soft laser desorption method used to generate gas-phase ions for mass spectrometry analysis. DIOS is considered the first surface-based surface-assisted laser desorption/ionization (SALDI-MS) approach. Prior approaches were accomplished using nanoparticles in a matrix of glycerol, while DIOS is a matrix-free technique in which a sample is deposited on a nanostructured surface and the sample desorbed directly from the nanostructured surface through the adsorption of laser light energy. DIOS has been used to analyze organic molecules, metabolites, biomolecules and peptides, and, ultimately, to image tissues and cells.

<span class="mw-page-title-main">Matrix-assisted ionization</span>

In mass spectrometry, matrix-assisted ionization is a low fragmentation (soft) ionization technique which involves the transfer of particles of the analyte and matrix sample from atmospheric pressure (AP) to the heated inlet tube connecting the AP region to the vacuum of the mass analyzer.

<span class="mw-page-title-main">Secondary electrospray ionization</span>

Secondary electro-spray ionization (SESI) is an ambient ionization technique for the analysis of trace concentrations of vapors, where a nano-electrospray produces charging agents that collide with the analyte molecules directly in gas-phase. In the subsequent reaction, the charge is transferred and vapors get ionized, most molecules get protonated and deprotonated. SESI works in combination with mass spectrometry or ion-mobility spectrometry.

Probe electrospray ionization (PESI) is an electrospray-based ambient ionization technique which is coupled with mass spectrometry for sample analysis. Unlike traditional mass spectrometry ion sources which must be maintained in a vacuum, ambient ionization techniques permit sample ionization under ambient conditions, allowing for the high-throughput analysis of samples in their native state, often with minimal or no sample pre-treatment. The PESI ion source simply consists of a needle to which a high voltage is applied following sample pick-up, initiating electrospray directly from the solid needle.

<span class="mw-page-title-main">Laser diode thermal desorption</span>

Laser diode thermal desorption (LDTD) is an ionization technique that is coupled to mass spectrometry to analyze samples with atmospheric pressure chemical ionization (APCI). It uses a laser to thermally desorb analytes that are deposited on a stainless steel sheet sample holder, called LazWell. The coupling of LDTD and APCI is considered to be a soft-ionization technique. With LDTD-APCI, it is possible to analyze samples in forensics, pharmaceuticals, environment, food and clinical studies. LDTD is suitable for small molecules between 0 and 1200 Da and some peptides such as cyclosporine.

Barbara Seliger Larsen is a mass spectrometrist, with a career in instrumentations and applications of mass spectrometry in industry, and served on the board of the American Society for Mass Spectrometry for several terms.

References

  1. Domin, Marek; Cody, Robert (2014). Ambient Ionization Mass Spectrometry. RSC (Royal Society of Chemistry). doi:10.1039/9781782628026. ISBN   978-1-84973-926-9.
  2. Cooks, R. Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M. (2006). "Ambient Mass Spectrometry". Science. 311 (5767): 1566–70. Bibcode:2006Sci...311.1566C. doi:10.1126/science.1119426. PMID   16543450. S2CID   22007354.
  3. 1 2 3 Monge, María Eugenia; Harris, Glenn A.; Dwivedi, Prabha; Fernández, Facundo M. (2013). "Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization". Chemical Reviews. 113 (4): 2269–2308. doi:10.1021/cr300309q. ISSN   0009-2665. PMID   23301684.
  4. Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie (2010). "Ambient Ionization Mass Spectrometry". Annual Review of Analytical Chemistry. 3 (1): 43–65. Bibcode:2010ARAC....3...43H. doi:10.1146/annurev.anchem.111808.073702. ISSN   1936-1327. PMID   20636033.
  5. Paine, Martin R. L.; Barker, Philip J.; Blanksby, Stephen J. (15 January 2014). "Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review". Analytica Chimica Acta. 808: 70–82. Bibcode:2014AcAC..808...70P. doi:10.1016/j.aca.2013.10.001. PMID   24370094.
  6. Badu-Tawiah, Abraham K.; Eberlin, Livia S.; Ouyang, Zheng; Cooks, R. Graham (2013). "Chemical Aspects of the Extractive Methods of Ambient Ionization Mass Spectrometry". Annual Review of Physical Chemistry. 64 (1): 481–505. Bibcode:2013ARPC...64..481B. doi:10.1146/annurev-physchem-040412-110026. ISSN   0066-426X. PMID   23331308.
  7. 1 2 Takats, Z.; Wiseman, J. M.; Gologan, B; Cooks, R. G. (2004). "Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization". Science. 306 (5695): 471–473. Bibcode:2004Sci...306..471T. doi:10.1126/science.1104404. ISSN   0036-8075. PMID   15486296. S2CID   22994482.
  8. Takáts Z, Wiseman JM, Cooks RG (2005). "Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology". Journal of Mass Spectrometry. 40 (10): 1261–75. Bibcode:2005JMSp...40.1261T. doi: 10.1002/jms.922 . PMID   16237663.
  9. Haapala M, Pól J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R (2007). "Desorption Atmospheric Pressure Photoionization". Anal. Chem. 79 (20): 7867–7872. doi:10.1021/ac071152g. PMID   17803282.
  10. 1 2 Shelley, Jacob T.; Wiley, Joshua S.; Chan, George C. Y.; Schilling, Gregory D.; Ray, Steven J.; Hieftje, Gary M. (2009-05-01). "Characterization of Direct-Current Atmospheric-Pressure Discharges Useful for Ambient Desorption/Ionization Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 20 (5): 837–844. doi: 10.1016/j.jasms.2008.12.020 . PMID   19185515.
  11. 1 2 3 4 Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten (2016-02-01). "Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS". Journal of Mass Spectrometry. 51 (2): 141–149. Bibcode:2016JMSp...51..141B. doi:10.1002/jms.3733. ISSN   1096-9888. PMID   26889930.
  12. 1 2 3 Andrade, Francisco J.; Shelley, Jacob T.; Wetzel, William C.; Webb, Michael R.; Gamez, Gerardo; Ray, Steven J.; Hieftje, Gary M. (2008). "Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase". Analytical Chemistry. 80 (8): 2646–2653. doi:10.1021/ac800156y. ISSN   0003-2700. PMID   18345693.
  13. 1 2 Gross, Jürgen H. (2013-09-15). "Direct analysis in real time—a critical review on DART-MS". Analytical and Bioanalytical Chemistry. 406 (1): 63–80. doi:10.1007/s00216-013-7316-0. ISSN   1618-2642. PMID   24036523. S2CID   9565130.
  14. R.B. Cody; J.A. Laramée; H.D. Durst (2005). "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions" (PDF). Anal. Chem. 77 (8): 2297–2302. doi:10.1021/ac050162j. PMID   15828760.
  15. Laiko, Victor V.; Baldwin, Michael A.; Burlingame, Alma L. (2000). "Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 72 (4): 652–657. doi:10.1021/ac990998k. ISSN   0003-2700. PMID   10701247.
  16. Ifa, Demian R.; Wu, Chunping; Ouyang, Zheng; Cooks, R. Graham (2010). "Desorption electrospray ionization and other ambient ionization methods: current progress and preview". The Analyst. 135 (4): 669–81. Bibcode:2010Ana...135..669I. doi:10.1039/b925257f. ISSN   0003-2654. PMID   20309441.
  17. Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R. (2013). "Mass spectrometry imaging under ambient conditions". Mass Spectrometry Reviews. 32 (3): 218–243. Bibcode:2013MSRv...32..218W. doi:10.1002/mas.21360. ISSN   0277-7037. PMC   3530640 . PMID   22996621.
  18. Gray, Alan L. (1985). "Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry". The Analyst. 110 (5): 551. Bibcode:1985Ana...110..551G. doi:10.1039/an9851000551. ISSN   0003-2654.
  19. 1 2 Coon, Joshua J.; McHale, Kevin J.; Harrison, W. W. (2002). "Atmospheric pressure laser desorption/chemical ionization mass spectrometry: a new ionization method based on existing themes". Rapid Communications in Mass Spectrometry. 16 (7): 681–685. Bibcode:2002RCMS...16..681C. doi:10.1002/rcm.626. ISSN   0951-4198. PMID   11921247.
  20. Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J (2005). "Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids". Rapid Commun. Mass Spectrom. 19 (24): 3701–4. Bibcode:2005RCMS...19.3701S. doi:10.1002/rcm.2243. PMID   16299699.
  21. Peng, Ivory X.; Ogorzalek Loo, Rachel R.; Margalith, Eli; Little, Mark W.; Loo, Joseph A. (2010). "Electrospray-assisted laser desorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins". The Analyst. 135 (4): 767–72. Bibcode:2010Ana...135..767P. doi:10.1039/b923303b. ISSN   0003-2654. PMC   3006438 . PMID   20349541.
  22. Sampson JS, Hawkridge AM, Muddiman DC (2006). "Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry". J. Am. Soc. Mass Spectrom. 17 (12): 1712–6. doi: 10.1016/j.jasms.2006.08.003 . PMID   16952462.
  23. Nemes P, Vertes A (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–106. doi:10.1021/ac071181r. PMID   17900146.
  24. 1 2 Rezenom, Yohannes H.; Dong, Jianan; Murray, Kermit K. (2008). "Infrared laser-assisted desorption electrospray ionization mass spectrometry". The Analyst. 133 (2): 226–32. Bibcode:2008Ana...133..226R. doi:10.1039/b715146b. ISSN   0003-2654. PMID   18227946.
  25. 1 2 Sampson, Jason S.; Muddiman, David C. (2009). "Atmospheric pressure infrared (10.6 μm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer". Rapid Communications in Mass Spectrometry. 23 (13): 1989–1992. doi:10.1002/rcm.4113. ISSN   0951-4198. PMID   19504481.
  26. 1 2 Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas (2014). "A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods". Rapid Communications in Mass Spectrometry. 28 (16): 1779–1791. Bibcode:2014RCMS...28.1779B. doi:10.1002/rcm.6960. ISSN   0951-4198. PMID   25559448.
  27. Jorabchi, Kaveh; Smith, Lloyd M. (2009). "Single Droplet Separations and Surface Partition Coefficient Measurements Using Laser Ablation Mass Spectrometry". Analytical Chemistry. 81 (23): 9682–9688. doi:10.1021/ac901819r. ISSN   0003-2700. PMC   2911232 . PMID   19886638.
  28. 1 2 Liu, Jia; Qiu, Bo; Luo, Hai (2010). "Fingerprinting of yogurt products by laser desorption spray post-ionization mass spectrometry". Rapid Communications in Mass Spectrometry. 24 (9): 1365–1370. Bibcode:2010RCMS...24.1365L. doi:10.1002/rcm.4527. ISSN   0951-4198. PMID   20391610.
  29. Flanigan, P.; Levis, R. (2014). "Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry". Annual Review of Analytical Chemistry. 7: 229–256. Bibcode:2014ARAC....7..229F. doi:10.1146/annurev-anchem-071213-020343. PMID   25014343.
  30. 1 2 Brady, John J.; Judge, Elizabeth J.; Levis, Robert J. (2009). "Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization". Rapid Communications in Mass Spectrometry. 23 (19): 3151–3157. Bibcode:2009RCMS...23.3151B. doi:10.1002/rcm.4226. ISSN   0951-4198. PMID   19714710.
  31. 1 2 Shelley, Jacob T.; Ray, Steven J.; Hieftje, Gary M. (2008). "Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging". Analytical Chemistry. 80 (21): 8308–8313. doi:10.1021/ac801594u. ISSN   0003-2700. PMID   18826246.
  32. 1 2 Galhena, Asiri S.; Harris, Glenn A.; Nyadong, Leonard; Murray, Kermit K.; Fernández, Facundo M. (2010). "Small Molecule Ambient Mass Spectrometry Imaging by Infrared Laser Ablation Metastable-Induced Chemical Ionization". Analytical Chemistry. 82 (6): 2178–2181. doi: 10.1021/ac902905v . ISSN   0003-2700. PMID   20155978.
  33. PESI was first introduced by Kenzo Hiraoka et al. in 2007 — Hiraoka K.; Nishidate K.; Mori K.; Asakawa D.; Suzuki S. (2007). "Development of probe electrospray using a solid needle". Rapid Communications in Mass Spectrometry . 21 (18): 3139–3144. Bibcode:2007RCMS...21.3139H. doi:10.1002/rcm.3201. PMID   17708527.
  34. He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper (2011). "Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application". Rapid Communications in Mass Spectrometry. 25 (7): 843–850. Bibcode:2011RCMS...25..843H. doi:10.1002/rcm.4920. ISSN   0951-4198. PMID   21416520.
  35. Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper (2013). "Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions". Analytical Chemistry. 85 (5): 2977–2982. doi: 10.1021/ac400009s . ISSN   0003-2700. PMID   23384246.
  36. Jecklin, Matthias Conradin; Gamez, Gerardo; Touboul, David; Zenobi, Renato (2008). "Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food". Rapid Communications in Mass Spectrometry. 22 (18): 2791–2798. Bibcode:2008RCMS...22.2791J. doi:10.1002/rcm.3677. ISSN   0951-4198. PMID   18697232.
  37. Neidholdt, Evan L.; Beauchamp, J. L. (2007). "Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry". Analytical Chemistry. 79 (10): 3945–3948. doi:10.1021/ac070261s. ISSN   0003-2700. PMID   17432828.
  38. Corso, Gaetano; D'Apolito, Oceania; Garofalo, Daniela; Paglia, Giuseppe; Dello Russo, Antonio (2011). "Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1811 (11): 669–679. doi:10.1016/j.bbalip.2011.05.009. ISSN   1388-1981. PMID   21683155.
  39. Chen, Hao; Ouyang, Zheng; Cooks, R. Graham (2006). "Thermal Production and Reactions of Organic Ions at Atmospheric Pressure". Angewandte Chemie International Edition. 45 (22): 3656–3660. doi:10.1002/anie.200600660. ISSN   1433-7851. PMID   16639755.
  40. McEwen, Charles N.; McKay, Richard G.; Larsen, Barbara S. (2005). "Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments". Analytical Chemistry. 77 (23): 7826–7831. doi:10.1021/ac051470k. ISSN   0003-2700. PMID   16316194.
  41. Steeb, Jennifer; Galhena, Asiri S.; Nyadong, Leonard; Janata, Jiří; Fernández, Facundo M. (2009). "Beta electron-assisted direct chemical ionization (BADCI) probe for ambient mass spectrometry". Chemical Communications (31): 4699–701. doi:10.1039/b909072j. ISSN   1359-7345. PMID   19641814.
  42. Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M. (2008). "Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets". Journal of the American Society for Mass Spectrometry. 19 (6): 833–840. doi:10.1016/j.jasms.2008.02.012. ISSN   1044-0305. PMC   2488387 . PMID   18387311.
  43. Takats, Zoltan; Cotte-Rodriguez, Ismael; Talaty, Nari; Chen, Huanwen; Cooks, R. Graham (2005). "Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry". Chemical Communications (15): 1950–1952. doi:10.1039/b418697d. ISSN   1359-7345. PMID   15834468.
  44. Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Arvola, Ville; Kotiaho, Tapio; Ketola, Raimo A.; Franssila, Sami; Kauppila, Tiina J.; Kostiainen, Risto (2007). "Desorption Atmospheric Pressure Photoionization". Analytical Chemistry. 79 (20): 7867–7872. doi:10.1021/ac071152g. ISSN   0003-2700. PMID   17803282.
  45. Cody, Robert B.; Laramée, James A.; Durst, H. Dupont (2005). "Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions". Analytical Chemistry. 77 (8): 2297–2302. doi:10.1021/ac050162j. ISSN   0003-2700. PMID   15828760.
  46. 1 2 Na, Na; Zhao, Mengxia; Zhang, Sichun; Yang, Chengdui; Zhang, Xinrong (2007). "Development of a dielectric barrier discharge ion source for ambient mass spectrometry". Journal of the American Society for Mass Spectrometry. 18 (10): 1859–1862. doi: 10.1016/j.jasms.2007.07.027 . ISSN   1044-0305. PMID   17728138.
  47. Forbes, Thomas P.; Brewer, Tim M.; Gillen, Greg (2013). "Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry". The Analyst. 138 (19): 5665–73. Bibcode:2013Ana...138.5665F. doi:10.1039/c3an01164j. ISSN   0003-2654. PMID   23923127.
  48. Nyadong, Leonard; Galhena, Asiri S.; Fernández, Facundo M. (2009). "Desorption Electrospray/Metastable-Induced Ionization: A Flexible Multimode Ambient Ion Generation Technique". Analytical Chemistry. 81 (18): 7788–7794. doi:10.1021/ac9014098. ISSN   0003-2700. PMID   19689156.
  49. Haddad, Renato; Sparrapan, Regina; Eberlin, Marcos N. (2006). "Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry". Rapid Communications in Mass Spectrometry. 20 (19): 2901–2905. Bibcode:2006RCMS...20.2901H. doi:10.1002/rcm.2680. ISSN   0951-4198. PMID   16941547.
  50. Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B. (2010). "Desorption ionization by charge exchange (DICE) for sample analysis under ambient conditions by mass spectrometry". Journal of the American Society for Mass Spectrometry. 21 (9): 1554–1560. doi: 10.1016/j.jasms.2010.04.020 . ISSN   1044-0305. PMID   20542709.
  51. Krieger, Sonja; Hayen, Heiko; Schmitz, Oliver J. (2013). "Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS". Analytical and Bioanalytical Chemistry. 405 (25): 8337–8345. doi:10.1007/s00216-013-7238-x. ISSN   1618-2642. PMID   23912829. S2CID   10841740.
  52. Jeng, Jingyueh; Lin, Che-Hsin; Shiea, Jentaie (2005). "Electrospray from Nanostructured Tungsten Oxide Surfaces with Ultralow Sample Volume". Analytical Chemistry. 77 (24): 8170–8173. doi:10.1021/ac0512960. ISSN   0003-2700. PMID   16351172.
  53. Özdemir, Abdil; Chen, Chung-Hsuan (2010). "Electrode-assisted desorption electrospray ionization mass spectrometry". Journal of Mass Spectrometry. 45 (10): 1203–1211. Bibcode:2010JMSp...45.1203O. doi:10.1002/jms.1815. ISSN   1076-5174. PMID   20857387.
  54. Haddad, Renato; Sparrapan, Regina; Kotiaho, Tapio; Eberlin, Marcos N. (2008). "Easy Ambient Sonic-Spray Ionization-Membrane Interface Mass Spectrometry for Direct Analysis of Solution Constituents". Analytical Chemistry. 80 (3): 898–903. doi:10.1021/ac701960q. ISSN   0003-2700. PMID   18179250.
  55. Chen, Huanwen; Venter, Andre; Cooks, R. Graham (2006). "Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation". Chemical Communications (19): 2042–4. doi:10.1039/b602614a. ISSN   1359-7345. PMID   16767269.
  56. Huang, Min-Zong; Hsu, Hsiu-Jung; Wu, Chen-I; Lin, Shu-Yao; Ma, Ya-Lin; Cheng, Tian-Lu; Shiea, Jentaie (2007). "Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry". Rapid Communications in Mass Spectrometry. 21 (11): 1767–1775. Bibcode:2007RCMS...21.1767H. doi:10.1002/rcm.3011. ISSN   0951-4198. PMID   17479981.
  57. Hsu, Hsiu-Jung; Kuo, Tseng-Long; Wu, Shu-Huey; Oung, Jung-Nan; Shiea, Jentaie (2005). "Characterization of Synthetic Polymers by Electrospray-Assisted Pyrolysis Ionization-Mass Spectrometry". Analytical Chemistry. 77 (23): 7744–7749. doi:10.1021/ac051116m. ISSN   0003-2700. PMID   16316184.
  58. Qiao, Liang; Tobolkina, Elena; Lesch, Andreas; Bondarenko, Alexandra; Zhong, Xiaoqin; Liu, Baohong; Pick, Horst; Vogel, Horst; Girault, Hubert H. (2014). "Electrostatic Spray Ionization Mass Spectrometry Imaging". Analytical Chemistry. 86 (4): 2033–2041. doi:10.1021/ac4031779. ISSN   0003-2700. PMID   24446793.
  59. Grimm, Ronald L.; Beauchamp, J. L. (2003). "Field-Induced Droplet Ionization Mass Spectrometry". The Journal of Physical Chemistry B. 107 (51): 14161–14163. doi:10.1021/jp037099r. ISSN   1520-6106.
  60. Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai (2013). "Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode". Rapid Communications in Mass Spectrometry. 27 (5): 613–620. Bibcode:2013RCMS...27..613R. doi:10.1002/rcm.6499. ISSN   0951-4198. PMID   23413220.
  61. Van Berkel, Gary J.; Pasilis, Sofie P.; Ovchinnikova, Olga (2008). "Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry". Journal of Mass Spectrometry. 43 (9): 1161–1180. Bibcode:2008JMSp...43.1161V. doi:10.1002/jms.1440. ISSN   1076-5174. PMID   18671242.
  62. Nemes, Peter; Vertes, Akos (2007). "Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry". Analytical Chemistry. 79 (21): 8098–8106. doi:10.1021/ac071181r. ISSN   0003-2700. PMID   17900146.
  63. K. Janssens; R. Van Grieken (26 November 2004). Non-destructive Micro Analysis of Cultural Heritage Materials. Elsevier. pp. 313–. ISBN   978-0-08-045442-9.
  64. Wu, Jin; Hughes, Christopher S.; Picard, Pierre; Letarte, Sylvain; Gaudreault, Mireille; Lévesque, Jean-François; Nicoll-Griffith, Deborah A.; Bateman, Kevin P. (2007). "High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry". Analytical Chemistry. 79 (12): 4657–4665. doi:10.1021/ac070221o. ISSN   0003-2700. PMID   17497828.
  65. "LESA – A New Mass Spectrometry-based Surface Analysis Technique Using the TriVersa NanoMate". Archived from the original on 2014-07-27. Retrieved 2014-07-20.
  66. Cheng, Sy-Chyi; Cheng, Tain-Lu; Chang, Hui-Chiu; Shiea, Jentaie (2009). "Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions". Analytical Chemistry. 81 (3): 868–874. doi:10.1021/ac800896y. ISSN   0003-2700. PMID   19178334.
  67. Van Berkel, Gary J.; Kertesz, Vilmos; King, Richard C. (2009). "High-Throughput Mode Liquid Microjunction Surface Sampling Probe". Analytical Chemistry. 81 (16): 7096–7101. doi:10.1021/ac901098d. ISSN   0003-2700. PMID   19606841.
  68. Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo (2013). "Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 24 (3): 341–347. Bibcode:2013JASMS..24..341S. doi:10.1007/s13361-012-0564-y. ISSN   1044-0305. PMID   23423791. S2CID   39368022.
  69. Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth (2011). "Liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit". Analytical and Bioanalytical Chemistry. 402 (1): 261–268. doi:10.1007/s00216-011-5359-7. ISSN   1618-2642. PMID   21910014. S2CID   33571580.
  70. Trimpin, S.; Inutan, E. D.; Herath, T. N.; McEwen, C. N. (2009). "Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions". Molecular & Cellular Proteomics. 9 (2): 362–367. doi: 10.1074/mcp.M900527-MCP200 . ISSN   1535-9476. PMC   2830846 . PMID   19955086.
  71. Harper, Jason D.; Charipar, Nicholas A.; Mulligan, Christopher C.; Zhang, Xinrong; Cooks, R. Graham; Ouyang, Zheng (2008). "Low-Temperature Plasma Probe for Ambient Desorption Ionization". Analytical Chemistry. 80 (23): 9097–9104. doi:10.1021/ac801641a. ISSN   0003-2700. PMID   19551980.
  72. McEwen, Charles N.; Pagnotti, Vincent S.; Inutan, Ellen D.; Trimpin, Sarah (2010). "New Paradigm in Ionization: Multiply Charged Ion Formation from a Solid Matrix without a Laser or Voltage". Analytical Chemistry. 82 (22): 9164–9168. doi:10.1021/ac102339y. ISSN   0003-2700. PMID   20973512.
  73. Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C. (2006). "Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry". Journal of the American Society for Mass Spectrometry. 17 (12): 1712–1716. doi: 10.1016/j.jasms.2006.08.003 . ISSN   1044-0305. PMID   16952462.
  74. Wang, Bo; Ding, Xuelu; Zhao, Zhongjun; Duan, Yixiang (2014). "Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry". International Journal of Mass Spectrometry. 377: 507–514. Bibcode:2015IJMSp.377..507W. doi:10.1016/j.ijms.2014.05.018. ISSN   1387-3806.
  75. Zhan, Xuefang; Zhao, Zhongjun; Yuan, Xin; Wang, Qihui; Li, Dandan; Xie, Hong; Li, Xuemei; Zhou, Meigui; Duan, Yixiang (2013). "Microwave-Induced Plasma Desorption/Ionization Source for Ambient Mass Spectrometry". Analytical Chemistry. 85 (9): 4512–4519. doi:10.1021/ac400296v. ISSN   0003-2700. PMID   23534913.
  76. Roach, Patrick J.; Laskin, Julia; Laskin, Alexander (2010). "Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry". The Analyst. 135 (9): 2233–6. Bibcode:2010Ana...135.2233R. doi:10.1039/c0an00312c. ISSN   0003-2654. PMID   20593081.
  77. Chen, Huanwen; Wortmann, Arno; Zenobi, Renato (2007). "Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting". Journal of Mass Spectrometry. 42 (9): 1123–1135. Bibcode:2007JMSp...42.1123C. doi:10.1002/jms.1282. ISSN   1076-5174. PMID   17721903.
  78. Ratcliffe, Lucy V.; Rutten, Frank J. M.; Barrett, David A.; Whitmore, Terry; Seymour, David; Greenwood, Claire; Aranda-Gonzalvo, Yolanda; Robinson, Steven; McCoustra, Martin (2007). "Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 79 (16): 6094–6101. doi:10.1021/ac070109q. ISSN   0003-2700. PMID   17628043.
  79. Paine, Martin R. L.; Barker, Philip J.; Blanksby, Stephen J. (2012). "Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces". Mass Spectrometry Letters. 3 (1): 25–28. doi: 10.5478/MSL.2012.3.1.025 .
  80. Feng, Baosheng; Zhang, Jialing; Chang, Cuilan; Li, Liping; Li, Min; Xiong, Xingchuang; Guo, Chengan; Tang, Fei; Bai, Yu; Liu, Huwei (2014). "Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications". Analytical Chemistry. 86 (9): 4164–4169. doi:10.1021/ac403310k. ISSN   0003-2700. PMID   24670045.
  81. Zhang, Jialing; Zhou, Zhigui; Yang, Jianwang; Zhang, Wei; Bai, Yu; Liu, Huwei (2012). "Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds". Analytical Chemistry. 84 (3): 1496–1503. doi:10.1021/ac202732y. ISSN   0003-2700. PMID   22243032.
  82. Zhou, Yueming; Zhang, Ning; Li, Yafeng; Xiong, Caiqiao; Chen, Suming; Chen, Yongtai; Nie, Zongxiu (2014). "Plasma-based ambient sampling/ionization/transmission integrated source for mass spectrometry". The Analyst. 139 (21): 5387–92. Bibcode:2014Ana...139.5387Z. doi:10.1039/C4AN00979G. ISSN   0003-2654. PMID   25147876.
  83. Zhu, Hongying; Li, Gongyu; Huang, Guangming (2014). "Screening of Complicated Matrixes with Paper Assisted Ultrasonic Spray Ionization Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 25 (6): 935–942. Bibcode:2014JASMS..25..935Z. doi:10.1007/s13361-014-0862-7. ISSN   1044-0305. PMID   24664810. S2CID   2521462.
  84. Hiraoka, Kenzo; Nishidate, Kentaro; Mori, Kunihiko; Asakawa, Daiki; Suzuki, Shigeo (2007). "Development of probe electrospray using a solid needle". Rapid Communications in Mass Spectrometry. 21 (18): 3139–3144. Bibcode:2007RCMS...21.3139H. doi:10.1002/rcm.3201. ISSN   0951-4198. PMID   17708527.
  85. Liu, Jiangjiang; Wang, He; Manicke, Nicholas E.; Lin, Jin-Ming; Cooks, R. Graham; Ouyang, Zheng (2010). "Development, Characterization, and Application of Paper Spray Ionization". Analytical Chemistry. 82 (6): 2463–2471. doi:10.1021/ac902854g. ISSN   0003-2700. PMID   20158226.
  86. Huang, Yun-Qing; You, Jin-Qing; Yuan, Bi-Feng; Feng, Yu-Qi (2012). "Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples". The Analyst. 137 (19): 4593–7. Bibcode:2012Ana...137.4593H. doi:10.1039/c2an35856e. ISSN   0003-2654. PMID   22898704.
  87. Dixon, R. Brent; Sampson, Jason S.; Muddiman, David C. (2009). "Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection". Journal of the American Society for Mass Spectrometry. 20 (4): 597–600. doi: 10.1016/j.jasms.2008.11.024 . ISSN   1044-0305. PMID   19112029.
  88. Dixon, R. Brent; Sampson, Jason S.; Hawkridge, Adam M.; Muddiman, David C. (2008). "Ambient Aerodynamic Ionization Source for Remote Analyte Sampling and Mass Spectrometric Analysis". Analytical Chemistry. 80 (13): 5266–5271. doi:10.1021/ac800289f. ISSN   0003-2700. PMID   18529018.
  89. Schäfer, Karl-Christian; Dénes, Júlia; Albrecht, Katalin; Szaniszló, Tamás; Balog, Júlia; Skoumal, Réka; Katona, Mária; Tóth, Miklós; Balogh, Lajos; Takáts, Zoltán (2009). "In Vivo, In Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry". Angewandte Chemie International Edition. 48 (44): 8240–8242. doi:10.1002/anie.200902546. ISSN   1433-7851. PMID   19746375.
  90. Bennett, Rachel V.; Morzan, Ezequiel M.; Huckaby, Jacob O.; Monge, María Eugenia; Christensen, Henrick I.; Fernández, Facundo M. (2014). "Robotic plasma probe ionization mass spectrometry (RoPPI-MS) of non-planar surfaces". The Analyst. 139 (11): 2658–62. Bibcode:2014Ana...139.2658B. doi:10.1039/c4an00277f. hdl: 11336/4102 . ISSN   0003-2654. PMID   24603806.
  91. Crotti, Sara; Traldi, Pietro (2009). "Aspects of the Role of Surfaces in Ionization Processes". Combinatorial Chemistry & High Throughput Screening . 12 (2): 125–136. doi:10.2174/138620709787315427. ISSN   1386-2073. PMID   19199882.
  92. Pagnotti, Vincent S.; Inutan, Ellen D.; Marshall, Darrell D.; McEwen, Charles N.; Trimpin, Sarah (2011). "Inlet Ionization: A New Highly Sensitive Approach for Liquid Chromatography/Mass Spectrometry of Small and Large Molecules". Analytical Chemistry. 83 (20): 7591–7594. doi:10.1021/ac201982r. ISSN   0003-2700. PMID   21899326.
  93. Heron, Scott R.; Wilson, Rab; Shaffer, Scott A.; Goodlett, David R.; Cooper, Jonathan M. (2010). "Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry". Analytical Chemistry. 82 (10): 3985–3989. doi:10.1021/ac100372c. ISSN   0003-2700. PMC   3073871 . PMID   20364823.
  94. Wu, Ching; Siems, William F.; Hill, Herbert H. (2000). "Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs". Analytical Chemistry. 72 (2): 396–403. doi:10.1021/ac9907235. ISSN   0003-2700. PMID   10658336.
  95. Mandal, Mridul Kanti; Yoshimura, Kentaro; Saha, Subhrakanti; Ninomiya, Satoshi; Rahman, Md. Obaidur; Yu, Zhan; Chen, Lee Chuin; Shida, Yasuo; Takeda, Sen; Nonami, Hiroshi; Hiraoka, Kenzo (2012). "Solid probe assisted nanoelectrospray ionization mass spectrometry for biological tissue diagnostics". The Analyst. 137 (20): 4658–61. Bibcode:2012Ana...137.4658M. doi:10.1039/c2an36006c. ISSN   0003-2654. PMID   22937532.
  96. Martin, Audrey N.; Farquar, George R.; Steele, Paul T.; Jones, A. Daniel; Frank, Matthias (2009). "Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples". Analytical Chemistry. 81 (22): 9336–9342. doi:10.1021/ac901208h. ISSN   0003-2700. PMID   19842633.
  97. Hecht, Max; Evard, Hanno; Takkis, Kalev; Veigure, Rūta; Aro, Rudolf; Lohmus, Rynno; Herodes, Koit; Leito, Ivo; Kipper, Karin (2017). "Sponge Spray — Reaching New Dimensions of Direct Sampling and Analysis by MS". Analytical Chemistry. 89 (21): 11592–11597. doi:10.1021/acs.analchem.7b02957. ISSN   0003-2700. PMID   29028329.
  98. Van Berkel, Gary J.; Sanchez, Amaury D.; Quirke, J. Martin E. (2002). "Thin-Layer Chromatography and Electrospray Mass Spectrometry Coupled Using a Surface Sampling Probe". Analytical Chemistry. 74 (24): 6216–6223. doi:10.1021/ac020540+. ISSN   0003-2700. PMID   12510741.
  99. Neidholdt, Evan L.; Beauchamp, J. L. (2011). "Switched Ferroelectric Plasma Ionizer (SwiFerr) for Ambient Mass Spectrometry". Analytical Chemistry. 83 (1): 38–43. doi:10.1021/ac1013833. ISSN   0003-2700. PMID   21128617.
  100. Lin, Jia-Yi; Chen, Tsung-Yi; Chen, Jen-Yi; Chen, Yu-Chie (2010). "Multilayer gold nanoparticle-assisted thermal desorption ambient mass spectrometry for the analysis of small organics". The Analyst. 135 (10): 2668–75. Bibcode:2010Ana...135.2668L. doi:10.1039/c0an00157k. ISSN   0003-2654. PMID   20721383.
  101. Chipuk, Joseph E.; Brodbelt, Jennifer S. (2008). "Transmission mode desorption electrospray ionization". Journal of the American Society for Mass Spectrometry. 19 (11): 1612–1620. doi: 10.1016/j.jasms.2008.07.002 . ISSN   1044-0305. PMID   18684639.
  102. Kerian, Kevin S.; Jarmusch, Alan K.; Cooks, R. Graham (2014). "Touch spray mass spectrometry for in situ analysis of complex samples". The Analyst. 139 (11): 2714–20. Bibcode:2014Ana...139.2714K. doi:10.1039/c4an00548a. ISSN   0003-2654. PMC   4063212 . PMID   24756256.
  103. Chen, Tsung-Yi; Chao, Chin-Sheng; Mong, Kwok-Kong Tony; Chen, Yu-Chie (2010). "Ultrasonication-assisted spray ionization mass spectrometry for on-line monitoring of organic reactions". Chemical Communications. 46 (44): 8347–9. doi:10.1039/c0cc02629h. ISSN   1359-7345. PMID   20957254.
  104. Santos, Vanessa G.; Regiani, Thaís; Dias, Fernanda F. G.; Romão, Wanderson; Jara, Jose Luis Paz; Klitzke, Clécio F.; Coelho, Fernando; Eberlin, Marcos N. (2011). "Venturi Easy Ambient Sonic-Spray Ionization". Analytical Chemistry. 83 (4): 1375–1380. doi:10.1021/ac102765z. ISSN   0003-2700. PMID   21235233.
  105. Jen-Ying Liu, Pei-Chun Chen, Yea-Wenn Liou, Kai-Yin Chang, Cheng-Huang Lin (2017). "Development and Application of a Brush Spray Derived from a Calligraphy Brush Style Synthetic Hair Pen for Use in ESI/MS". Mass Spectrometry. 6 (Spec Iss): s0058. doi:10.5702/massspectrometry.s0058. PMC   5358408 . PMID   28337397.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  106. Yea-Wenn Liou, Jian-Siang Wang, Chien-Chung Chen and Cheng-Huang Lin (2017). "Development of an on-line microextraction method for use in fiber-spray/mass spectrometry". International Journal of Mass Spectrometry. 421: 178–183. Bibcode:2017IJMSp.421..178L. doi:10.1016/j.ijms.2017.07.001.{{cite journal}}: CS1 maint: multiple names: authors list (link)