Benz(e)acephenanthrylene

Last updated
Benz[e]acephenanthrylene [1] [2]
NIST-Benz-e-acephenanthrylene-20140305.png
Names
Preferred IUPAC name
Benzo[e]acephenanthrylene
Other names
Benzo[b]fluoranthene; Benzo[e]fluoranthene; 2,3-Benzofluoranthrene; B[b]F; 2,3-Benzofluoranthene; 4,5-Benzofluoranthene; 2,3-Benzfluoranthene; 3,4-Benzfluoranthene; 3,4-Benzofluoranthene; Benz[b]fluoranthene [1]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.375 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-911-9
KEGG
PubChem CID
RTECS number
  • CU1400000
UNII
UN number 2811, 3077
  • InChI=FTOVXSOBNPWTSH-UHFFFAOYSA-N
  • [1] :InChI=1S/C20H12/c1-2-7-14-13(6-1)12-19-16-9-4-3-8-15(16)18-11-5-10-17(14)20(18)19/h1-12H
  • [2] :C1=CC=C2C3=C4C(=CC=C3)C5=CC=CC=C5C4=CC2=C1
Properties
C20H12
Molar mass 252.316 g·mol−1
AppearanceOff-white to tan powder [2]
Density 1.286 g/cm3
Melting point 166 °C (331 °F; 439 K) [2]
Boiling point 481 °C (898 °F; 754 K)
Hazards
GHS labelling:
GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H350, H410
P201, P202, P273, P281, P308+P313, P391, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Benz[e]acephenanthrylene is an organic compound with the chemical formula C20H12. It is a polycyclic aromatic hydrocarbon (PAH) made of four benzene rings around a 5-membered ring.

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The word "aromatic" originates from the past grouping of molecules based on smell, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation with their smell.

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Naphthalene</span> Chemical compound

Naphthalene is an organic compound with formula C
10
H
8
. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.

<span class="mw-page-title-main">Aromaticity</span> Phenomenon of chemical stability in resonance hybrids of cyclic organic compounds

In chemistry, aromaticity means the molecule has cyclic (ring-shaped) structures with pi bonds in resonance. Aromatic rings give increased stability compared to saturated compounds having single bonds, and other geometric or connective non-cyclic arrangements with the same set of atoms. Aromatic rings are very stable and do not break apart easily. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have enhanced stability. The term aromaticity with this meaning is historically related to the concept of having an aroma, but is a distinct property from that meaning.

<span class="mw-page-title-main">Anthracene</span> Chemical compound

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.

<span class="mw-page-title-main">Coronene</span> Chemical compound

Coronene is a polycyclic aromatic hydrocarbon (PAH) comprising seven peri-fused benzene rings. Its chemical formula is C
24
H
12
. It is a yellow material that dissolves in common solvents including benzene, toluene, and dichloromethane. Its solutions emit blue light fluorescence under UV light. It has been used as a solvent probe, similar to pyrene.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.

<span class="mw-page-title-main">Triphenylene</span> Chemical compound

Triphenylene is an organic compound with the formula (C6H4)3. A flat polycyclic aromatic hydrocarbon (PAH), it consists of four fused benzene rings. Triphenylene has delocalized 18-π-electron systems based on a planar structure, corresponding to the symmetry group D3h. It is a white or colorless solid.

<span class="mw-page-title-main">Fluoranthene</span> Chemical compound

Fluoranthene is a polycyclic aromatic hydrocarbon (PAH). The molecule can be viewed as the fusion of naphthalene and benzene unit connected by a five-membered ring. Although samples are often pale yellow, the compound is colorless. It is soluble in nonpolar organic solvents. It is a member of the class of PAHs known as non-alternant PAHs because it has rings other than those with six carbon atoms. It is a structural isomer of the alternant PAH pyrene. It is not as thermodynamically stable as pyrene. Its name is derived from its fluorescence under UV light.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

In organic and physical organic chemistry, Clar's rule is an empirical rule that relates the chemical stability of a molecule with its aromaticity. It was introduced in 1972 by the Austrian organic chemist Erich Clar in his book The Aromatic Sextet. The rule states that given a polycyclic aromatic hydrocarbon, the resonance structure most important to characterize its properties is that with the largest number of aromatic π-sextets i.e. benzene-like moieties.

<span class="mw-page-title-main">Benzocyclobutadiene</span> Chemical compound

Benzocyclobutadiene is the simplest polycyclic hydrocarbon, being composed of an aromatic benzene ring fused to an anti-aromatic cyclobutadiene ring. It has chemical formula C8H6. Though the benzene ring is stabilized by aromaticity, the cyclobutadiene portion has a destabilizing effect. This results into it being a non-aromatic compound - neither behaving as aromatic nor an antiaromatic one. For this reason, benzocyclobutadiene will readily dimerize or polymerize and it reacts as a dienophile in Diels-Alder reactions.

<span class="mw-page-title-main">Benz(a)anthracene</span> Chemical compound

Benz[a]anthracene or benzo[a]anthracene is a polycyclic aromatic hydrocarbon with the chemical formula C18H12. It is produced during incomplete combustion of organic matter.

Benzo(<i>e</i>)pyrene Chemical compound

Benzo[e]pyrene is a polycyclic aromatic hydrocarbon with the chemical formula C20H12. It is listed as a Group 3 carcinogen by the IARC.

Benzo(<i>j</i>)fluoranthene Chemical compound

Benzo[j]fluoranthene (BjF) is an organic compound with the chemical formula C20H12. Classified as a polycyclic aromatic hydrocarbon (PAH), it is a colourless solid that is poorly soluble in most solvents. Impure samples can appear off white. Closely related isomeric compounds include benzo[a]fluoranthene (BaF), bendo[b]fluoranthene (BbF), benzo[e]fluoranthene (BeF), and benzo[k]fluoranthene (BkF). BjF is present in fossil fuels and is released during incomplete combustion of organic matter. It has been traced in the smoke of cigarettes, exhaust from gasoline engines, emissions from the combustion of various types of coal and emissions from oil heating, as well as an impurity in some oils such as soybean oil.

<span class="mw-page-title-main">Kekulene</span> Chemical compound

Kekulene is a polycyclic aromatic hydrocarbon which consists of 12 fused benzene rings arranged in a circle. It is therefore classified as a [12]-circulene with the chemical formula C48H24. It was first synthesized in 1978, and was named in honor of August Kekulé, the discoverer of the structure of the benzene molecule.

Dibenz(<i>a</i>,<i>h</i>)anthracene Chemical compound

Dibenz[a,h]anthracene is an organic compound with the chemical formula C22H14. It is a polycyclic aromatic hydrocarbon (PAH) made of five fused benzene rings. It is a fused five-ringed PAH which is common as a pollutant of smoke and oils. It is white to light yellow crystalline solid. It is stable and highly genotoxic in bacterial and mammalian cell systems, as it intercalates into DNA and causes mutations.

<span class="mw-page-title-main">Thermal rearrangement of aromatic hydrocarbons</span>

Thermal rearrangements of aromatic hydrocarbons are considered to be unimolecular reactions that directly involve the atoms of an aromatic ring structure and require no other reagent than heat. These reactions can be categorized in two major types: one that involves a complete and permanent skeletal reorganization (isomerization), and one in which the atoms are scrambled but no net change in the aromatic ring occurs (automerization). The general reaction schemes of the two types are illustrated in Figure 1.

<span class="mw-page-title-main">Benzocyclooctatetraene</span> Chemical compound

Benzocyclooctatetraene is a polycyclic hydrocarbon with chemical formula C12H10, composed of fused a benzene ring and a cyclooctatetraene ring. Only the benzene ring is aromatic in this compound.

References

  1. 1 2 3 4 Staff (2011). "Benz[e]acephenanthrylene". NIST . Retrieved March 5, 2014.
  2. 1 2 3 4 5 6 Staff (2014). "Benzo[e]acephenanthrylene". ChemSpider . Retrieved March 5, 2014.