Booster separation motor

Last updated
Booster separation motors fire

The booster separation motors or BSMs on the Space Shuttle were relatively small rocket motors that separated the reusable solid rocket boosters (SRB) from the orbiter after SRB burnout. Eight booster separation motors were attached to each of the shuttle's two reusable solid rocket boosters, four on the forward frustum and four on the aft skirt. [1] [2] [3]

About two minutes into a Space Shuttle flight, all 16 of these motors were fired simultaneously for 1.2 seconds, providing the precise thrust required to safely separate the spent boosters from the Space Shuttle's external tank and orbiter, while traveling more than 1,300 metres per second (2,900 mph) and an altitude of approximately 44 kilometres (27 mi).

The booster separation motors were produced by ATK Launch Systems Group, part of Alliant Techsystems (ATK) Inc., at their facility in Brigham City, Utah. The Booster separation motors each weighed 167 pounds (76 kg) when loaded with propellant, and 77 pounds (35 kg) when empty. They were 31.1 inches (79 cm) long and 12.88 inches (32.7 cm) in diameter. [4]

Northrop Grumman is now manufacturing the booster separation motors for the Space Launch System Boosters, part of the NASA Space Launch System (SLS) for the Artemis program. [5]

For Ariane 5 and Ariane 6, a Norwegian-Finnish company Nammo manufactures similar but different booster separation motors. [6]

Related Research Articles

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development.

<span class="mw-page-title-main">Vehicle Assembly Building</span> Spacecraft assembly building operated by NASA at the Kennedy Space Center

The Vehicle Assembly Building, or VAB, is a large building at NASA's Kennedy Space Center (KSC), designed to assemble large pre-manufactured space vehicle components, such as the massive Saturn V, the Space Shuttle and the Space Launch System, and stack them vertically onto one of three mobile launcher platforms used by NASA. As of March 2022, the first Space Launch System (SLS) rocket was assembled inside in preparation for the Artemis 1 mission, launched on November 16, 2022.

<span class="mw-page-title-main">Booster (rocketry)</span> Rocket used to augment the thrust of a larger rocket

A booster rocket is either the first stage of a multistage launch vehicle, or else a shorter-burning rocket used in parallel with longer-burning sustainer rockets to augment the space vehicle's takeoff thrust and payload capability. Boosters are traditionally necessary to launch spacecraft into low Earth orbit, and are especially important for a space vehicle to go beyond Earth orbit. The booster is dropped to fall back to Earth once its fuel is expended, a point known as booster engine cut-off (BECO).

<span class="mw-page-title-main">Space Shuttle Solid Rocket Booster</span> Solid propellant rocket used to launch Space Shuttle orbiter.

The Space Shuttle Solid Rocket Booster (SRB) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight. A pair of these provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

<span class="mw-page-title-main">Solid rocket booster</span> Solid propellant motor used to augment the thrust of a rocket

A solid rocket booster (SRB) is a large solid propellant motor used to provide thrust in spacecraft launches from initial launch through the first ascent. Many launch vehicles, including the Atlas V, SLS and space shuttle, have used SRBs to give launch vehicles much of the thrust required to place the vehicle into orbit. The space shuttle used two space shuttle SRBs, which were the largest solid propellant motors ever built and the first designed for recovery and reuse. The propellant for each solid rocket motor on the space shuttle weighed approximately 500,000 kilograms.

<span class="mw-page-title-main">Northrop Grumman Pegasus</span> Air-launched rocket

Pegasus is an air-launched launch vehicle developed by Orbital Sciences Corporation (OSC) and now built and launched by Northrop Grumman. Pegasus is the world's first privately developed orbital launch vehicle. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remains active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft), and its first stage has a wing and a tail to provide lift and attitude control while in the atmosphere. Notably, the first stage does not have a thrust vector control (TVC) system.

Thiokol was an American corporation concerned initially with rubber and related chemicals, and later with rocket and missile propulsion systems. Its name is a portmanteau of the Greek words for sulfur and glue, an allusion to the company's initial product, Thiokol polymer.

<span class="mw-page-title-main">Graphite-Epoxy Motor</span> American solid rocket booster

The Graphite-Epoxy Motor (GEM) is a family of solid rocket boosters developed in the late 1980s and used since 1990. GEM motors are manufactured with carbon-fibre-reinforced polymer casings and a fuel consisting of HTPB-bound ammonium perchlorate composite propellant. GEM is produced by Northrop Grumman Space Systems. GEM boosters are used on the Atlas V and were previously used on the Delta II, Delta III, and Delta IV launch vehicles. A new variant, the GEM 63XL, is slated to fly as part of the Vulcan Centaur launch vehicle no earlier than the 4th quarter of 2023.

<span class="mw-page-title-main">Shuttle-derived vehicle</span> Launch vehicle built from Space Shuttle components

Shuttle-derived vehicles (SDV) are space launch vehicles and spacecraft that use components, technology, and infrastructure originally developed for the Space Shuttle program.

<span class="mw-page-title-main">Ares I</span> Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

<span class="mw-page-title-main">Athena (rocket family)</span> Lockheed Martin expendable launch system

Athena was a 1990s Lockheed Martin expendable launch system which underwent several name changes in its lifetime.

<span class="mw-page-title-main">Star 48</span> American solid rocket motor developed by Thiokol

The Star 48 is the largest of a family of solid rocket motors used by many space propulsion and launch vehicle stages. It is used almost exclusively as an upper stage. It was developed primarily by Thiokol Propulsion and is now, after several mergers, manufactured by Northrop Grumman’s Space Systems division. A Star 48B stage is also one of the few man-made items sent on escape trajectories out of the Solar System, although it is derelict since its use. The Star 48B variant was the PAM-D upper stage used on the now-retired Delta II rocket.

<span class="mw-page-title-main">Castor (rocket stage)</span> Solid-fuel orbital vehicle component

Castor is a family of solid-fuel rocket stages and boosters built by Thiokol and used on a variety of launch vehicles. They were initially developed as the second-stage motor of the Scout rocket. The design was based on the MGM-29 Sergeant, a surface-to-surface missile developed for the United States Army at the Jet Propulsion Laboratory.

<span class="mw-page-title-main">NASA Railroad</span> Short-line railroad at the Kennedy Space Center

The NASA Railroad is a Class III industrial short-line railroad at the Kennedy Space Center in Cape Canaveral, Florida. The railroad consists of 38 miles (61 km) of track connecting the mainline of the Florida East Coast Railway and trackage at the Cape Canaveral Space Force Station. NASA uses the railroad to deliver large or bulk materials to support its operations, particularly solid rocket boosters and chemicals such as helium and oxygen for rocket fuel.

<span class="mw-page-title-main">Liberty (rocket)</span> Launch vehicle design

Liberty was a 2011 launch vehicle concept proposed by Northrop Grumman Space Systems and Airbus Defence and Space for phase 2 of the NASA Commercial Crew Development (CCDev) program intended to stimulate development of privately operated crew vehicles to low Earth orbit.

<span class="mw-page-title-main">Space tug</span> Spacecraft used to transfer cargo from one orbit to another

A space tug is a type of spacecraft used to transfer spaceborne cargo from one orbit to another orbit with different energy characteristics. An example would be moving a spacecraft from a low Earth orbit (LEO) to a higher-energy orbit like a geostationary transfer orbit, a lunar transfer, or an escape trajectory.

The Star is a family of US solid-propellant rocket motors originally developed by Thiokol and used by many space propulsion and launch vehicle stages. They are used almost exclusively as an upper stage, often as an apogee kick motor.

Northrop Grumman Innovation Systems (NGIS) was a sector of Northrop Grumman from 2018 through 2019. It was formed from Orbital ATK Inc. a company which resulted from the merger of Orbital Sciences Corporation and parts of Alliant Techsystems in 2015. Orbital ATK was purchased by Northrop Grumman in 2018. Northrop Grumman Innovation Systems designed, built, and delivered space, defense, and aviation-related systems to customers around the world both as a prime contractor and as a merchant supplier. It had a workforce of approximately 12,000 employees dedicated to aerospace and defense including about 4,000 engineers and scientists; 7,000 manufacturing and operations specialists; and 1,000 management and administration personnel. With Northrop Grumman's reorganization of its divisions effective January 1, 2020, NGIS was split, with most of the sector merging with other Northrop Grumman businesses into a new Space Systems sector.

<span class="mw-page-title-main">OmegA</span> Canceled US launch vehicle

OmegA was a medium-lift to heavy-lift launch vehicle concept that spent several years in development by Northrop Grumman during 2016–2020, with that development substantially funded by the U.S. government. OmegA was intended for launching U.S. national security satellites, as part of the U.S. Department of the Air Force National Security Space Launch (NSSL) replacement program.

<span class="mw-page-title-main">Studied Space Shuttle designs</span> Launch vehicle study

During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These involved different ways of increasing cargo and crew capacity, as well as investigating further reusability. A large focus of these designs were related to developing new shuttle boosters and improvements to the central tank, but also looked to expand NASA's ability to launch deep space missions and build modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as the Constellation, Orbital Space Plane Program, and Artemis program.

References

  1. Dumoulin, Jim (2000) [1988]. "SOLID ROCKET BOOSTERS". NSTS 1988 News Reference Manual. NASA. SRB SEPARATION. Retrieved February 24, 2021.
  2. Dismukes, Kim, ed. (1988). "SRB Separation". Shuttle Reference. NASA. Archived from the original on February 10, 2001. Retrieved February 24, 2021.
  3. Tomlin, Donald, ed. (1975). "Space Shuttle Solid Rocket Booster (SRB) Separation" (PDF). NASA Technical Reports Server. NASA. Retrieved October 9, 2022.
  4. "Northrop Grumman Propulsion Products Catalog" (PDF). Northrop Grumman. April 5, 2016. Retrieved August 8, 2023.
  5. "Artemis". Northrop Grumman. 2021. Booster Separation Motor. Retrieved February 24, 2021.
  6. "Nammo to supply Ariane 6 with rocket motors" (Press release). Raufoss: Nammo. 26 March 2022. Retrieved 11 November 2022.