Chloride peroxidase

Last updated
Chloride peroxidase
Identifiers
EC no. 1.11.1.10
CAS no. 9055-20-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Chloride peroxidase (EC 1.11.1.10) is a family of enzymes that catalyzes the chlorination of organic compounds. This enzyme combines the inorganic substrates chloride and hydrogen peroxide to produce the equivalent of Cl+, which replaces a proton in hydrocarbon substrate:

Contents

R-H + Cl + H2O2 + H+ → R-Cl + 2 H2O

In fact the source of "Cl+" is hypochlorous acid (HOCl). [1] Many organochlorine compounds are biosynthesized in this way.

This enzyme belongs to the family of oxidoreductases, specifically those acting on a peroxide as acceptors (peroxidases). The systematic name of this enzyme class is chloride:hydrogen-peroxide oxidoreductase. This enzyme is also called chloroperoxidase. It employs one cofactor which may be either heme or vanadium. [2]

The heme-containing chloroperoxidase (CPO) exhibits peroxidase, catalase and cytochrome P450-like activities in addition to catalyzing halogenation reactions. [3] Despite functional similarities with other heme enzymes, the structure of CPO is unique, which folds into a tertiary structure dominated by eight helical segments. The catalytic acid base, required to cleave the peroxide O-O bond, is glutamic acid rather than histidine as in horseradish peroxidase.

Structural studies

As of late 2007, 30 structures have been solved for this class of enzymes, with PDB accession codes 1A7U, 1A88, 1A8Q, 1A8S, 1A8U, 1BRT, 1CPO, 1IDQ, 1IDU, 1QHB, 1QI9, 1VNC, 1VNE, 1VNF, 1VNG, 1VNH, 1VNI, 1VNS, 2CIV, 2CIW, 2CIX, 2CIY, 2CIZ, 2CJ0, 2CJ1, 2CJ2, 2CPO, 2J18, 2J19, and 2J5M.

Related Research Articles

<span class="mw-page-title-main">Hemoprotein</span> Protein containing a heme prosthetic group

A hemeprotein, or heme protein, is a protein that contains a heme prosthetic group. They are a very large class of metalloproteins. The heme group confers functionality, which can include oxygen carrying, oxygen reduction, electron transfer, and other processes. Heme is bound to the protein either covalently or noncovalently or both.

<span class="mw-page-title-main">Peroxidase</span> Peroxide-decomposing enzyme

Peroxidases or peroxide reductases are a large group of enzymes which play a role in various biological processes. They are named after the fact that they commonly break up peroxides.

<span class="mw-page-title-main">Heme</span> Chemical coordination complex of an iron ion chelated to a porphyrin

Heme, or haem, is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver.

<span class="mw-page-title-main">Cytochrome c peroxidase</span>

Cytochrome c peroxidase, or CCP, is a water-soluble heme-containing enzyme of the peroxidase family that takes reducing equivalents from cytochrome c and reduces hydrogen peroxide to water:

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

<span class="mw-page-title-main">Ascorbate peroxidase</span> Enzyme

Ascorbate peroxidase (or L-ascorbate peroxidase, APX) (EC 1.11.1.11) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Horseradish peroxidase</span> Chemical compound and enzyme

The enzyme horseradish peroxidase (HRP), found in the roots of horseradish, is used extensively in biochemistry applications. It is a metalloenzyme with many isoforms, of which the most studied type is C. It catalyzes the oxidation of various organic substrates by hydrogen peroxide.

<span class="mw-page-title-main">Camphor 5-monooxygenase</span>

In enzymology, a camphor 5-monooxygenase (EC 1.14.15.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-cinnamate 4-monooxygenase (EC 1.14.14.91) is an enzyme that catalyzes the chemical reaction

In enzymology, a lignin peroxidase (EC 1.11.1.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a manganese peroxidase (EC 1.11.1.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NADH peroxidase</span>

In enzymology, a NADH peroxidase (EC 1.11.1.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Animal heme-dependent peroxidases</span>

Animal heme-dependent peroxidases is a family of peroxidases. Peroxidases are found in bacteria, fungi, plants and animals. On the basis of sequence similarity, a number of animal heme peroxidases can be categorized as members of a superfamily: myeloperoxidase (MPO); eosinophil peroxidase (EPO); lactoperoxidase (LPO); thyroid peroxidase (TPO); prostaglandin H synthase (PGHS); and peroxidasin.

Haloperoxidases are peroxidases that are able to mediate the oxidation of halides by hydrogen peroxide. Both halides and hydrogen peroxide are widely available in the environment.

Haem peroxidases (or heme peroxidases) are haem-containing enzymes that use hydrogen peroxide as the electron acceptor to catalyse a number of oxidative reactions. Most haem peroxidases follow the reaction scheme:

<span class="mw-page-title-main">Bromide peroxidase</span> Family of enzymes

Bromide peroxidase (EC 1.11.1.18, bromoperoxidase, haloperoxidase (ambiguous), eosinophil peroxidase) is a family of enzymes with systematic name bromide:hydrogen-peroxide oxidoreductase. These enzymes catalyse the following chemical reaction:

Unspecific peroxygenase (EC 1.11.2.1, aromatic peroxygenase, mushroom peroxygenase, haloperoxidase-peroxygenase, Agrocybe aegerita peroxidase) is an enzyme with systematic name substrate:hydrogen peroxide oxidoreductase (RH-hydroxylating or -epoxidising). This enzyme catalyses the following chemical reaction

Fatty-acid peroxygenase is an enzyme with systematic name fatty acid:hydroperoxide oxidoreductase (RH-hydroxylating). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Eosinophil peroxidase</span> Protein-coding gene in the species Homo sapiens

Eosinophil peroxidase is an enzyme found within the eosinophil granulocytes, innate immune cells of humans and mammals. This oxidoreductase protein is encoded by the gene EPX, expressed within these myeloid cells. EPO shares many similarities with its orthologous peroxidases, myeloperoxidase (MPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO). The protein is concentrated in secretory granules within eosinophils. Eosinophil peroxidase is a heme peroxidase, its activities including the oxidation of halide ions to bacteriocidal reactive oxygen species, the cationic disruption of bacterial cell walls, and the post-translational modification of protein amino acid residues.

References

  1. Hofrichter, M.; Ullrich, R.; Pecyna, Marek J.; Liers, Christiane; Lundell, Taina (2010). "New and classic families of secreted fungal heme peroxidases". Appl Microbiol Biotechnol. 87 (3): 871–897. doi:10.1007/s00253-010-2633-0. PMID   20495915. S2CID   24417282.
  2. Butler, Alison; Carter-Franklin, Jayme N. (2004). "The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products". Natural Product Reports. 21 (1): 180–8. doi:10.1039/b302337k. PMID   15039842. (this paper also discussed chloroperoxidases.
  3. Poulos TL, Sundaramoorthy M, Terner J (1995). "The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid". Structure. 3 (12): 1367–1377. doi: 10.1016/S0969-2126(01)00274-X . PMID   8747463.

Further reading