Fatal insomnia

Last updated

Fatal insomnia
Cranial imaging of a FFI patient.jpg
Cranial imaging of an FFI patient. In the MRI, there are abnormal signals in the bilateral frontoparietal subcortical area. MRA showed smaller distal branches of cerebral arteries.
Specialty Neurology, Psychiatry, Sleep medicine, Neuropathology
Symptoms Progressive insomnia, ataxia, double vision, weight loss, high blood pressure, excessive sweating
Complications Permanent state of hypnagogia later in the illness
Usual onset45–50 years old [1]
TypesFatal familial insomnia, sporadic fatal insomnia [2]
Causes Genetic mutation, sporadic form (very rare)
Risk factors Family history
Diagnostic method Suspected based on symptoms, supported by sleep study, PET scan and genetic testing (if familial form is suspected) [3]
Differential diagnosis Alzheimer's disease, frontotemporal dementia, other transmissible spongiform encephalopathies [4]
PreventionNone
Treatment Supportive care [2]
Medication None
Prognosis Always fatal
Frequency70 families worldwide are known to carry the gene associated with the disease, 37 sporadic cases diagnosed (as of September 20th, 2022)

Fatal insomnia is an extremely rare neurodegenerative prion disease that results in trouble sleeping as its hallmark symptom. [2] The majority of cases are familial (fatal familial insomnia [FFI]), stemming from a mutation in the PRNP gene, with the remainder of cases occurring sporadically (sporadic fatal insomnia [sFI]). The problems with sleeping typically start out gradually and worsen over time. [4] Eventually, the patient will succumb to total insomnia (agrypnia excitata), most often leading to other symptoms such as speech problems, coordination problems, and dementia. [5] It results in death within a few months to a few years and has no known cure. [2]

Contents

Signs and symptoms

The disease has four stages: [6]

  1. Characterized by worsening insomnia, resulting in panic attacks, paranoia, and phobias. This stage lasts for about four months.
  2. Hallucinations and panic attacks become noticeable, continuing for about five months.
  3. Complete inability to sleep is followed by rapid loss of weight. This lasts for about three months.
  4. Dementia, during which the person becomes unresponsive or mute over the course of six months, is the final stage of the disease, after which death follows.

Clinically, FFI manifests with a disordered sleep-wake cycle, dysautonomia, motor disturbances, and neuropsychiatric disorders.

Other symptoms include profuse sweating, miosis (pinpoint pupils), sudden entrance into menopause or impotence, neck stiffness, and elevation of blood pressure and heart rate. The sporadic form of the disease often presents with double vision. Prolonged constipation is common as well. As the disease progresses, the person becomes stuck in a state of pre-sleep limbo, or hypnagogia, which is the state just before sleep in healthy individuals. During these stages, people commonly and repeatedly move their limbs as if they were dreaming. [7]

The age of onset is variable, ranging from 13 to 60 years, with an average of 50. [8] The disease can be detected prior to onset by genetic testing. [9] Death usually occurs between 6–36 months from onset. The presentation of the disease varies considerably from person to person, even among people within the same family; in the sporadic form, for example, sleep problems are not commonly reported and early symptoms are ataxia, cognitive impairment, and double vision. [10]

Cause

Idiogram of chromosome 20 showing gene PRP location Location of PRNP-gene in chromosome 20.svg
Idiogram of chromosome 20 showing gene PRP location

Fatal familial insomnia is a rare hereditary prion disease that is associated with the D178N-129M PRNP gene that is caused by a mutation. The gene PRNP that provides instructions for making the prion protein PrPC is located on the short (p) arm of chromosome 20 at position p13. [11] Both people with FFI and those with familial Creutzfeldt–Jakob disease (fCJD) carry a mutation at codon 178 of the prion protein gene. FFI is also invariably linked to the presence of the methionine codon at position 129 of the mutant allele, whereas fCJD is linked to the presence of the valine codon at that position. The disease occurs when there is a change of amino acid at position 178 when an asparagine (N) is found instead of the normal aspartic acid (D). This has to be accompanied with a methionine at position 129. [12]

FFI is an autosomal dominant disease that harbors a missense GAC to AAC mutation at codon 178 of the PRNP prion protein gene located on chromosome 20, along with the presence of the methionine polymorphism at position 129 of the mutant allele. Pathologically, FFI is characterized by predominant thalamic degeneration especially in the medio-dorsal and anterio-ventral nuclei. [13] Phenotypic variability is a perplexing feature of FFI. [14]

Pathophysiology

Given its striking clinical and neuropathologic similarities with fatal familial insomnia (FFI), a genetic prion disease linked to a point mutation at codon 178 (D178N) in the PRNP coupled with methionine at codon 129, the MM2T subtype is also known as sporadic FI (sFI). Transmission studies using susceptible transgenic mice have consistently demonstrated that the same prion strain is associated with both sFI and FFI. In contrast to what has been the rule for the most common neurodegenerative disorders, sFI is rarer than its genetic counterpart. Whereas the recognized patients with FFI are numerous and belong to >50 families worldwide, only about 30 cases of CJD MM2T and a few cases with mixed MM2T and MM2C features (MM2T+C) have been recorded to date.

In itself the presence of prions causes reduced glucose to be used by the thalamus and a mild hypo-metabolism of the cingulate cortex. The extent of this symptom varies between two variations of the disease, these being those presenting methionine homozygotes at codon 129 and methionine/valine heterozygotes being the most severe in the latter. [15] Given the relationship between the involvement of the thalamus in regulating sleep and alertness, a causal relationship can be drawn and is often mentioned as the cause. [16]

Diagnosis

Diagnosis is based on symptoms and can be supported by a sleep study, a PET scan and genetic testing if the patient's family has a history of the disease. As with other prion diseases, the diagnosis can be confirmed only by a brain autopsy post-mortem.

The real-time quaking-induced conversion (RT-QuIC), a highly sensitive assay that detects minute amounts of PrPSc in the cerebrospinal fluid (CSF), has been reported to have a sensitivity of 50% in FFI and sFI.[Cracco et al. Handb Clin Neurol 2018][Mock et al. Sci Rep. 2021] However, this low sensitivity may change since the examination was based on a low number of cases, and the RT-QuIC technology is continuously evolving.

A test that measures the cerebral metabolic rate of glucose by positron emission tomography (PET), referred to as [18F]-FDG-PET, has demonstrated severe hypometabolism of the thalamus bilaterally in FFI and sFI, also in the earliest stages of the disease. This hypometabolism then spreads, eventually impacting most cortical regions.[Cortelli et al. Brain 2006] The complexity and cost of this test currently impede its use in routine diagnosis.

Differential diagnosis

Other diseases involving the mammalian prion protein are known. [17] Some are transmissible (TSEs, including FFI) such as kuru, bovine spongiform encephalopathy (BSE, also known as mad cow disease) in cattle and chronic wasting disease in American deer and American elk in some areas of the United States and Canada, as well as Creutzfeldt–Jakob disease (CJD). Until recently prion diseases were thought to be transmissible only by direct contact with infected tissue, such as from eating infected tissue, transfusion or transplantation; research suggests that prions can be transmitted by aerosols but that the general public is not at risk of airborne infection. [18]

Treatments

Treatment involves palliative care. [2] There is conflicting evidence over the use of sleeping pills, including barbiturates, as a treatment for the disease. [19] [20] Symptoms of fatal familial insomnia may be treated with medications. Clonazepam may be prescribed to treat muscle spasms, and eszopiclone or zolpidem may be prescribed to help treat insomnia. However these drugs do not work in the long term. [21]

Prognosis

Like all prion diseases, the disease is invariably fatal. [22] [2] Life expectancy ranges from seven months to six years, [2] with an average of 18 months. [22]

Epidemiology and history

Hypnogram comparing the sleep pattern of a healthy control with five FFI patients, who display decreased sleep efficiency and disrupted sleep cycles. [W: wake; R: REM; N1-3: NREM sleep stages]. FFI Diagrams.svg
Hypnogram comparing the sleep pattern of a healthy control with five FFI patients, who display decreased sleep efficiency and disrupted sleep cycles. [W: wake; R: REM; N1-3: NREM sleep stages].

Fatal insomnia was first described by Elio Lugaresi et al. in 1986.

In 1998 40 families were known to carry the gene for FFI globally: eight German, five Italian, four American, two French, two Australian, two British, one Japanese and one Austrian. [23] In the Basque Country of Spain, 16 family cases of the 178N mutation were seen between 1993 and 2005 related to two families with a common ancestor in the 18th century. [24] In 2011, another family was added to the list when researchers found the first man in the Netherlands to be diagnosed with FFI. Whilst he had lived in the Netherlands for 19 years, he was of Egyptian descent. [25] Other prion diseases are similar to FFI and may be related but are missing the D178N gene mutation. [7]

As of 20 September 2022, 37 cases of sporadic fatal insomnia have been diagnosed. [3] Unlike in FFI, those with sFI do not have the D178N mutation in the PRNP-prion gene; they all have a different mutation in the same gene causing methionine homozygosity at codon 129. [26] [27] Nonetheless, the methionine presence in lieu of the valine (Val129) is what causes the sporadic form of disease. The targeting of this mutation has been suggested as a strategy for treatment, or possibly as a cure for the disease. [28]

Silvano, 1983, Bologna, Italy

In late 1983 Italian neurologist/sleep expert Dr Ignazio Roiter received a patient at the University of Bologna hospital's sleep institute. The man, known only as Silvano, decided in a rare moment of consciousness to be recorded for future studies and to donate his brain for research in hopes of finding a cure for future victims. [29]

In 1986, Lugaresi and colleagues first named and described in detail the clinical and histopathological features of fatal familial insomnia (FFI) [Lugaresi et al. NEJM]. This report was mostly based on a patient referred to as Silvano, who was diagnosed with sleep impairment in 1983 by Dr. Ignazio Roiter. Dr. Roiter referred the case to Prof. Elio Lugaresi, a well-known sleep expert, who, along with his colleagues, carried out advanced sleep analyses. As Silvano's condition quickly deteriorated, Lugaresi arranged for a postmortem neuropathological examination of the brain to be carried out by Dr. Gambetti, Lugaresi's former trainee. The collaboration of these two groups led to the 1986 publication [27]. At that time, a prion disease was not suspected because of the lack of prion-related histopathology and of frozen brain tissue for more advanced analyses. However, due to the dedication of Dr. Roiter and Silvano's family, more cases were received leading to the characterization of FFI as a familial prion disease linked to the 178Asn genetic mutation [Medori et al. NEJM, 1992]

Unnamed American patient, 2001

In an article published in 2006, Schenkein and Montagna wrote of a 52-year-old American man who was able to exceed the average survival time by nearly one year with various strategies that included vitamin therapy and meditation, different stimulants and hypnotics and even complete sensory deprivation in an attempt to induce sleep at night and increase alertness during the day. He managed to write a book and drive hundreds of miles in this time, but nonetheless, over the course of his trials, the man succumbed to the classic four-stage progression of the illness. [29]

Egyptian man, 2011, Netherlands

Timeline of an FFI patient (same as the one above this one) FFI timeline.svg
Timeline of an FFI patient (same as the one above this one)

In 2011, the first reported case in the Netherlands was of a 57-year-old man of Egyptian descent. The man came in with symptoms of double vision and progressive memory loss, and his family also noted he had recently become disoriented, paranoid and confused. Whilst he tended to fall asleep at random during daily activities, he experienced vivid dreams and random muscular jerks during normal slow-wave sleep. After four months of these symptoms, he began to have convulsions in his hands, trunk and lower limbs while awake. The person died at age 58, seven months after the onset of symptoms. An autopsy revealed mild atrophy of the frontal cortex and moderate atrophy of the thalamus. The latter is one of the most common signs of FFI. [25]

Research

Still with unclear benefit in humans, a number of treatments have had tentative success in slowing disease progression in animal models, including pentosan polysulfate, mepacrine, and amphotericin B. [3] As of 2016, a study investigating doxycycline is being carried out. [3] [30]

In 2009, a mouse model was made for FFI. These mice expressed a humanized version of the PrP protein that also contains the D178N FFI mutation. [31] These mice appear to have progressively fewer and shorter periods of uninterrupted sleep, damage in the thalamus, and early deaths, similar to humans with FFI.[ citation needed ]

The Prion Alliance was established by husband and wife duo Eric Minikel and Sonia Vallabh after Vallabh's mother was diagnosed with the fatal disease. [32] They conduct research at the Broad Institute to develop therapeutics for human prion diseases. Other research interests involve identifying biomarkers to track the progression of prion disease in living people. [33] [34]

Related Research Articles

<span class="mw-page-title-main">Creutzfeldt–Jakob disease</span> Degenerative neurological disorder

Creutzfeldt–Jakob disease (CJD), also known as subacute spongiform encephalopathy or neurocognitive disorder due to prion disease, is a fatal degenerative brain disorder. Early symptoms include memory problems, behavioral changes, poor coordination, and visual disturbances. Later symptoms include dementia, involuntary movements, blindness, weakness, and coma. About 70% of people die within a year of diagnosis. The name Creutzfeldt–Jakob disease was introduced by Walther Spielmeyer in 1922, after the German neurologists Hans Gerhard Creutzfeldt and Alfons Maria Jakob.

<span class="mw-page-title-main">Prion</span> Pathogenic type of misfolded protein

A prion is a misfolded protein that can induce misfolding of normal variants of the same protein and trigger cellular death. Prions cause prion diseases known as transmissible spongiform encephalopathies (TSEs) that are transmissible, fatal neurodegenerative diseases in humans and animals. The proteins may misfold sporadically, due to genetic mutations, or by exposure to an already misfolded protein. The consequent abnormal three-dimensional structure confers on them the ability to cause misfolding of other proteins.

Advanced Sleep Phase Disorder (ASPD), also known as the advanced sleep-phase type (ASPT) of circadian rhythm sleep disorder, is a condition that is characterized by a recurrent pattern of early evening sleepiness and very early morning awakening. This sleep phase advancement can interfere with daily social and work schedules, and results in shortened sleep duration and excessive daytime sleepiness. The timing of sleep and melatonin levels are regulated by the body's central circadian clock, which is located in the suprachiasmatic nucleus in the hypothalamus.

<span class="mw-page-title-main">Transmissible spongiform encephalopathy</span> Group of brain diseases induced by prions

Transmissible spongiform encephalopathies (TSEs) also known as prion diseases, are a group of progressive, incurable, and fatal conditions that are associated with prions and affect the brain and nervous system of many animals, including humans, cattle, and sheep. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a Spiroplasma infection. Mental and physical abilities deteriorate and many tiny holes appear in the cortex causing it to appear like a sponge when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.

Hypermetabolism is defined as an elevated resting energy expenditure (REE) > 110% of predicted REE. Hypermetabolism is accompanied by a variety of internal and external symptoms, most notably extreme weight loss, and can also be a symptom in itself. This state of increased metabolic activity can signal underlying issues, especially hyperthyroidism. Patients with Fatal familial insomnia can also present with hypermetabolism; however, this universally fatal disorder is exceedingly rare, with only a few known cases worldwide. The drastic impact of the hypermetabolic state on patient nutritional requirements is often understated or overlooked as well.

<span class="mw-page-title-main">Gerstmann–Sträussler–Scheinker syndrome</span> Human neurodegenerative disease

Gerstmann–Sträussler–Scheinker syndrome (GSS) is an extremely rare, always fatal neurodegenerative disease that affects patients from 20 to 60 years in age. It is exclusively heritable, and is found in only a few families all over the world. It is, however, classified with the transmissible spongiform encephalopathies (TSE) due to the causative role played by PRNP, the human prion protein. GSS was first reported by the Austrian physicians Josef Gerstmann, Ernst Sträussler and Ilya Scheinker in 1936.

<span class="mw-page-title-main">Major prion protein</span> Protein involved in multiple prion diseases

Major prion protein (PrP) is encoded in the human body by the PRNP gene also known as CD230. Expression of the protein is most predominant in the nervous system but occurs in many other tissues throughout the body.

<span class="mw-page-title-main">Fundic gland polyposis</span> Medical condition

Fundic gland polyposis is a medical syndrome where the fundus and the body of the stomach develop many fundic gland polyps. The condition has been described both in patients with familial adenomatous polyposis (FAP) and attenuated variants (AFAP), and in patients in whom it occurs sporadically.

<span class="mw-page-title-main">Variant Creutzfeldt–Jakob disease</span> Degenerative brain disease caused by prions

Variant Creutzfeldt–Jakob disease (vCJD), commonly referred to as "mad cow disease" or "human mad cow disease" to distinguish it from its BSE counterpart, is a fatal type of brain disease within the transmissible spongiform encephalopathy family. Initial symptoms include psychiatric problems, behavioral changes, and painful sensations. In the later stages of the illness, patients may exhibit poor coordination, dementia and involuntary movements. The length of time between exposure and the development of symptoms is unclear, but is believed to be years to decades. Average life expectancy following the onset of symptoms is 13 months.

<span class="mw-page-title-main">Paroxysmal kinesigenic choreoathetosis</span> Medical condition

Paroxysmal kinesigenic choreoathetosis (PKC) also called paroxysmal kinesigenic dyskinesia (PKD) is a hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can increase during puberty and decrease in a person's 20s to 30s. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular. This rare disorder only affects about 1 in 150,000 people, with PKD accounting for 86.8% of all the types of paroxysmal dyskinesias, and occurs more often in males than females. There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, hypocalcemia, hypoglycemia, hyperglycemia, central nervous system trauma, or peripheral nervous system trauma. PKD has also been linked with infantile convulsions and choreoathetosis (ICCA) syndrome, in which patients have afebrile seizures during infancy and then develop paroxysmal choreoathetosis later in life. This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child.

Early-onset Alzheimer's disease (EOAD), also called younger-onset Alzheimer's disease (YOAD), is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5–10% of all Alzheimer's cases. About 60% have a positive family history of Alzheimer's and 13% of them are inherited in an autosomal dominant manner. Most cases of early-onset Alzheimer's share the same traits as the "late-onset" form and are not caused by known genetic mutations. Little is understood about how it starts.

The National Prion Clinic (UK) is part of the University College London Hospitals NHS Foundation Trust. Its aim is to diagnose and treat patients with any form of human prion disease (Creutzfeldt-Jakob disease, CJD). In addition, the clinic facilitates research in diagnostics and therapeutics, organises clinical trials, and counsels those with an increased genetic risk of the disease.

<span class="mw-page-title-main">Variably protease-sensitive prionopathy</span> Medical condition

Variably protease-sensitive prionopathy (VPSPr) is a sporadic prion protein disease first described in an abstract for a conference on prions in 2006, and this study was published in a 2008 report on 11 cases. The study was conducted by Gambetti P., Zou W.Q., and coworkers from the United States National Prion Disease Pathology Surveillance Center. It was first identified as a distinct disease in 2010 by Zou W.Q. and coworkers from the United States National Prion Disease Pathology Surveillance Center.

In biology, a pathogen, in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

<span class="mw-page-title-main">Kohlschütter–Tönz syndrome</span> Medical condition

Kohlschütter–Tönz syndrome (KTS), also called amelo-cerebro-hypohidrotic syndrome, is a rare inherited syndrome characterized by epilepsy, psychomotor delay or regression, intellectual disability, and yellow teeth caused by amelogenesis imperfecta. It is a type A ectodermal dysplasia.

Louis Ptáček is an American neurologist and professor who contributed greatly to the field of genetics and neuroscience. He was also an HHMI investigator from 1997 to 2018. His chief areas of research include the understanding of inherited Mendelian disorders and circadian rhythm genes. Currently, Ptáček is a neurology professor and a director of the Division of Neurogenetics in University of California, San Francisco, School of Medicine. His current investigations primarily focus on extensive clinical studies in families with hereditary disorders, which include identifying and characterizing the genes responsible for neurological variations.

<span class="mw-page-title-main">Epstein syndrome</span> Medical condition

Epstein syndrome is a rare genetic disease characterized by a mutation in the MYH9 gene in nonmuscle myosin. This disease affects the patient's renal system and can result in kidney failure. Epstein syndrome was first discovered in 1972 when two families had similar symptoms to Alport syndrome. Epstein syndrome and other Alport-like disorders were seen to be caused by mutations in the MYH9 gene, however, Epstein syndrome differs as it was more specifically linked to a mutation on the R702 codon on the MYH9 gene. Diseases with mutations on the MYH9 gene also include May–Hegglin anomaly, Sebastian syndrome and Fechtner syndrome.

<span class="mw-page-title-main">United Kingdom BSE outbreak</span> Mad cow disease outbreak in the 1980s and 90s

The United Kingdom was afflicted with an outbreak of Bovine spongiform encephalopathy, and its human equivalent variant Creutzfeldt–Jakob disease (vCJD), in the 1980s and 1990s. Over four million head of cattle were slaughtered in an effort to contain the outbreak, and 178 people died after contracting vCJD through eating infected beef. A political and public health crisis resulted, and British beef was banned from export to numerous countries around the world, with some bans remaining in place until as late as 2019.

Familial sleep traits are heritable variations in sleep patterns, resulting in abnormal sleep-wake times and/or abnormal sleep length.

<span class="mw-page-title-main">Familial natural short sleep</span> Medical condition

Familial natural short sleep is a rare, genetic, typically inherited trait where an individual sleeps for fewer hours than average without suffering from daytime sleepiness or other consequences of sleep deprivation. This process is entirely natural in this kind of individual, and it is caused by certain genetic mutations. A person with this trait is known as a "natural short sleeper".

References

  1. "Fatal Familial Insomnia". NORD (National Organization for Rare Disorders). Retrieved 21 September 2022.
  2. 1 2 3 4 5 6 7 "Fatal Insomnia – Neurologic Disorders". Merck Manuals Professional Edition. Retrieved 17 May 2019.
  3. 1 2 3 4 "Fatal familial insomnia". Genetic and Rare Diseases Information Center (GARD) – an NCATS Program. Retrieved 17 May 2019.
  4. 1 2 "Fatal Familial Insomnia". NORD (National Organization for Rare Disorders). Retrieved 17 May 2019.
  5. "Fatal Insomnia". Merck Manual . Retrieved 4 May 2018.
  6. Turner, Rebecca. "Dying To Sleep: Fatal Familial Insomnia (FFI)". www.world-of-lucid-dreaming.com. Retrieved 22 March 2018.
  7. 1 2 Cortelli, Pietro; Gambetti, Pierluigi; Montagna, Pasquale & Lugaresi, Elio (1999). "Fatal familial insomnia: clinical features and molecular genetics". Journal of Sleep Research. 8: 23–29. doi:10.1046/j.1365-2869.1999.00005.x. PMID   10389103. S2CID   24399165.
  8. "Episode 25: Fatal Insomnia". Obscura: A True Crime Podcast.
  9. Max, D.T. (May 2010). "The Secret of Sleep". National Geographic Magazine. p. 74.
  10. "Fatal Insomnia - Neurologic Disorders".
  11. Reference, Genetics Home h. "PRNP gene". Genetics Home Reference. Retrieved 22 March 2018.
  12. Khan, Z.; Bollu, P. C. (2021). "Fatal Familial Insomnia". Zalan Khan; Pradeep C. Bollu, Fatal Familial Insomnia. StatPearls. PMID   29489284.{{cite book}}: |website= ignored (help)
  13. "Specific structuro-metabolic pattern of thalamic subnuclei in fatal familial insomnia: A PET/MRI imaging study".
  14. "Clinical profile of fatal familial insomnia: phenotypic variation in 129 polymorphisms and geographical regions".
  15. Cortelli., P. (1 July 1997). "Cerebral metabolism in fatal familial insomnia: Relation to duration, neuropathology, and distribution of protease-resistant prion protein". Neurology. 49 (1): 126–33. doi:10.1212/WNL.49.1.126. PMID   9222180. S2CID   31614281 . Retrieved 1 November 2019.
  16. "Sleep Spindle - an overview | ScienceDirect Topics".
  17. Panegyres, Peter; Burchell, Jennifer T. (2016). "Prion diseases: Immunotargets and therapy". ImmunoTargets and Therapy. 5: 57–68. doi: 10.2147/ITT.S64795 . ISSN   2253-1556. PMC   4970640 . PMID   27529062.
  18. Mosher, Dave (13 January 2011). "Airborne prions make for 100 percent lethal whiff". Wired . Retrieved 20 May 2011.
  19. Turner, Rebecca. "The man who never slept: Michael Corke". World of Lucid Dreaming. Retrieved 20 May 2011.
  20. Schenkein, Joyce; Montagna, Pasquale (12 September 2006). "Self Management of Fatal Familial Insomnia. Part 1: What Is FFI?". Medscape General Medicine. 8 (3): 65. ISSN   1531-0132. PMC   1781306 . PMID   17406188.
  21. "Fatal familial insomnia: Everything you need to know". MedicalNewsToday. 14 April 2020. Retrieved 27 February 2023.
  22. 1 2 Schenkein J, Montagna P (2006). "Self management of fatal familial insomnia. Part 1: what is FFI?". MedGenMed. 8 (3): 65. PMC   1781306 . PMID   17406188.
  23. Montagna P, Gambetti P, Cortelli P, Lugaresi E (2003). "Familial and sporadic fatal insomnia". Lancet Neurol. 2 (3): 167–76. doi:10.1016/S1474-4422(03)00323-5. PMID   12849238. S2CID   20822956.
  24. Zarranz JJ, Arteagoitia JM, Atarés B, Rodríguez-Martínez AB, Martínez-de-Pancorbo M, et al. (2007). "Las encefalopatias espongiformes o enfermedades por priones en el País Vasco". GacMedBilbao. 104 (2): 64–69. doi:10.1016/S0304-4858(07)74572-9. PMID   10371520.
  25. 1 2 Jansen, C.; Parchi, P.; Jelles, B.; Gouw, A. A.; Beunders, G.; van Spaendonk, R. M. L.; van de Kamp, J. M.; Lemstra, A. W.; Capellari, S.; Rozemuller, A. J. M. (13 July 2011). "The first case of fatal familial insomnia (FFI) in the Netherlands: a patient from Egyptian descent with concurrent four repeat tau deposits". Neuropathology and Applied Neurobiology . 37 (5): 549–53. doi:10.1111/j.1365-2990.2010.01126.x. PMID   20874730. S2CID   30722366.
  26. Mehta LR, Huddleston BJ, Skalabrin EJ, et al. (July 2008). "Sporadic fatal insomnia masquerading as a paraneoplastic cerebellar syndrome". Arch. Neurol. 65 (7): 971–73. doi: 10.1001/archneur.65.7.971 . PMID   18625868.
  27. Moody KM, Schonberger LB, Maddox RA, Zou WQ, Cracco L, Cali I (2011). "Sporadic fatal insomnia in a young woman: A diagnostic challenge". Case report. BMC Neurol. 11: 136. doi: 10.1186/1471-2377-11-136 . PMC   3214133 . PMID   22040318.
  28. Tabaee Damavandi P, Dove MT, Pickersgill RW, et al. (August 2017). "A review of drug therapy for sporadic fatal insomnia". Prion. 11 (5): 293–99. doi: 10.1080/19336896.2017.1368937 . PMC   5639864 . PMID   28976233.
  29. 1 2 Schenkein J, Montagna P (2006). "Part 2: Case report". MedGenMed: Medscape General Medicine. Self-management of fatal familial insomnia. 8 (3): 66. PMC   1781276 . PMID   17406189.
  30. Forlonia, Gianluigi; Tettamantia, Mauro; Luccaa, Ugo; Albanesea, Yasmin; Quaglioa, Elena; Chiesaa, Roberto; Erbettab, Alessandra; Villanib, Flavio; Redaellib, Veronica; Tagliavinib, Fabrizio; Artusoc, Vladimiro; Roiterc, Ignazio (21 May 2015). "Preventive study in subjects at risk of fatal familial insomnia: Innovative approach to rare diseases". Prion. 9 (2): 75–79. doi:10.1080/19336896.2015.1027857. PMC   4601344 . PMID   25996399.
  31. Jackson W, et al. (2009). "Spontaneous beneration of prion infectivity in fatal familial insomnia Knockin mice". Neuron. 63 (4): 438–50. doi:10.1016/j.neuron.2009.07.026. PMC   2775465 . PMID   19709627.
  32. Clancy, Kelly (15 January 2019). "One Couple's Tireless Crusade to Stop a Genetic Killer". Wired. ISSN   1059-1028 . Retrieved 21 January 2019.
  33. "Sonia Vallabh". Broad Institute. 20 August 2015. Retrieved 21 January 2019.
  34. "Prion Alliance". www.prionalliance.org. Retrieved 21 January 2019.