Gyrate rhombicosidodecahedron

Last updated
Gyrate rhombicosidodecahedron
Gyrate rhombicosidodecahedron.png
Type Canonical polyhedron
Johnson
J71J72J73
Faces 20 triangles
30 squares
12 pentagons
Edges 120
Vertices 60
Vertex configuration
Symmetry group
Properties convex
Net
Johnson solid 72 net.png

In geometry, the gyrate rhombicosidodecahedron is one of the Johnson solids (J72). It is also a canonical polyhedron.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Construction

The gyrate rhombicosidodecahedron can be constructed similarly as rhombicosidodecahedron: it is constructed from parabigyrate rhombicosidodecahedron by attaching two regular pentagonal cupolas onto its decagonal faces. As a result, these pentagonal cupolas cover its dodecagonal faces, so the resulting polyhedron has 20 equilateral triangles, 30 squares, and 10 regular pentagons as its faces. The difference between those two polyhedrons is that one of two pentagonal cupolas from the gyrate rhombicosidodecahedron is rotated through 36°. [2] A convex polyhedron in which all faces are regular polygons is called the Johnson solid, and the gyrate rhombicosidodecahedron is among them, enumerated as the 72th Johnson solid . [3]

Small rhombicosidodecahedron.png
Gyrate rhombicosidodecahedron color.png
Difference of rhombicosidodecahedron and gyrate rhombicosidodecahedron by their construction

Properties

Because the two aforementioned polyhedrons have similar construction, they have the same surface area and volume. A gyrate rhombicosidodecahedron with edge length has a surface area by adding all of the area of its faces: [2]

Its volume can be calculated by slicing it into two regular pentagonal cupolas and one parabigyrate rhombicosidodecahedron, and adding their volumes: [2]

The gyrate rhombicosidodecahedron is one of the five Johnson solids that do not have Rupert property, meaning a polyhedron of the same or larger size and the same shape as it cannot pass through a hole in it. The other Johnson solids with no such property are parabigyrate rhombicosidodecahedron, metabigyrate rhombicosidodecahedron, trigyrate rhombicosidodecahedron, and paragyrate diminished rhombicosidodecahedron. [4]

See also

Alternative Johnson solids, constructed by rotating different cupolae of a rhombicosidodecahedron, are:

Related Research Articles

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a "Johnson solid".

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Triangular cupola</span> Cupola with hexagonal base

In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. Many polyhedrons can be constructed involving the attachment of the base of a triangular cupola.

<span class="mw-page-title-main">Square cupola</span> Cupola with octagonal base

In geometry, the square cupola the cupola with octagonal base. In the case of edges are equal in length, it is the Johnson solid, a convex polyhedron with faces are regular. It can be considered as half of the rhombicuboctahedron. It can be used to construct many polyhedrons, particularly in other Johnson solids.

<span class="mw-page-title-main">Gyroelongated square bicupola</span> 45th Johnson solid

In geometry, the gyroelongated square bicupola is the Johnson solid constructed by attaching two square cupolae on each base of octagonal antiprism. It has the property of chirality.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Diminished rhombicosidodecahedron</span> 76th Johnson solid

In geometry, the diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with one pentagonal cupola removed.

<span class="mw-page-title-main">Metabidiminished rhombicosidodecahedron</span> 81st Johnson solid

In geometry, the metabidiminished rhombicosidodecahedron is one of the Johnson solids.

<span class="mw-page-title-main">Trigyrate rhombicosidodecahedron</span> 75th Johnson solid

In geometry, the trigyrate rhombicosidodecahedron is one of the Johnson solids. It contains 20 triangles, 30 squares and 12 pentagons. It is also a canonical polyhedron.

<span class="mw-page-title-main">Pentagonal gyrobicupola</span> 31st Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal gyrobicupola is one of the Johnson solids. Like the pentagonal orthobicupola, it can be obtained by joining two pentagonal cupolae along their bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

<span class="mw-page-title-main">Elongated pentagonal gyrobicupola</span> 39th Johnson solid

In geometry, the elongated pentagonal gyrobicupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal gyrobicupola by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal cupolae through 36 degrees before inserting the prism yields an elongated pentagonal orthobicupola.

<span class="mw-page-title-main">Parabigyrate rhombicosidodecahedron</span> 73rd Johnson solid

In geometry, the parabigyrate rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron.

<span class="mw-page-title-main">Metagyrate diminished rhombicosidodecahedron</span> 78th Johnson solid

In geometry, the metagyrate diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with one pentagonal cupola rotated through 36 degrees, and a non-opposing pentagonal cupola removed.

<span class="mw-page-title-main">Bigyrate diminished rhombicosidodecahedron</span> 79th Johnson solid

In geometry, the bigyrate diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two pentagonal cupolae rotated through 36 degrees, and a third pentagonal cupola removed.

<span class="mw-page-title-main">Gyrate bidiminished rhombicosidodecahedron</span> 82nd Johnson solid

In geometry, the gyrate bidiminished rhombicosidodecahedron is one of the Johnson solids.

<span class="mw-page-title-main">Metabigyrate rhombicosidodecahedron</span> 74th Johnson solid

In geometry, the metabigyrate rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two non-opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

<span class="mw-page-title-main">Elongated triangular orthobicupola</span> Johnson solid with 20 faces

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Crossed pentagrammic cupola</span> Polyhedron with 12 faces

In geometry, the crossed pentagrammic cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex pentagonal cupola. It can be obtained as a slice of the great rhombicosidodecahedron or quasirhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is a decagram.

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. 1 2 3 Berman, Martin (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR   0290245 .
  3. Francis, Darryl (August 2013), "Johnson solids & their acronyms", Word Ways, 46 (3): 177.
  4. Fredriksson, Albin (2024), "Optimizing for the Rupert property", The American Mathematical Monthly , 131 (3): 255–261, arXiv: 2210.00601 , doi:10.1080/00029890.2023.2285200 .