Snub square antiprism

Last updated
Snub square antiprism
Snub square antiprism.png
Type Johnson
J84J85J86
Faces 24 triangles
2 squares
Edges 40
Vertices 16
Vertex configuration
Symmetry group
Properties convex
Net
Johnson solid 85 net.png
3D model of a snub square antiprism J85 snub square antiprism.stl
3D model of a snub square antiprism

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

Contents

Construction and properties

The snub is the process of constructing polyhedra by cutting loose the edge's faces, twisting them, and then attaching equilateral triangles to their edges. [1] As the name suggested, the snub square antiprism is constructed by snubbing the square antiprism, [2] and this construction results in 24 equilateral triangles and 2 squares as its faces. [3] The Johnson solids are the convex polyhedra whose faces are regular, and the snub square antiprism is one of them, enumerated as , the 85th Johnson solid. [4]

Let be the positive root of the cubic polynomial

Furthermore, let be defined by

Then, Cartesian coordinates of a snub square antiprism with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by a rotation around the -axis by 90° and by a rotation by 180° around a straight line perpendicular to the -axis and making an angle of 22.5° with the -axis. [5] It has the three-dimensional symmetry of dihedral group of order 8. [2]

The surface area and volume of a snub square antiprism with edge length can be calculated as: [3]

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Snub cube</span> Archimedean solid with 38 faces

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

<span class="mw-page-title-main">Gyroelongated square pyramid</span> 10th Johnson solid (13 faces)

In geometry, the gyroelongated square pyramid is the Johnson solid that can be constructed by attaching an equilateral square pyramid to a square antiprism. It occurs in the chemistry such as square antiprismatic molecular geometry.

<span class="mw-page-title-main">Elongated pentagonal pyramid</span> 9th Johnson solid (11 faces)

In geometry, the elongated pentagonal pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal pyramid by attaching a pentagonal prism to its base.

<span class="mw-page-title-main">Gyroelongated square cupola</span>

In geometry, the gyroelongated square cupola is one of the Johnson solids (J23). As the name suggests, it can be constructed by gyroelongating a square cupola (J4) by attaching an octagonal antiprism to its base. It can also be seen as a gyroelongated square bicupola (J45) with one square bicupola removed.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub disphenoid</span> Convex polyhedron with 12 triangular faces

In geometry, the snub disphenoid is a convex polyhedron with 12 equilateral triangles as its faces. It is an example of deltahedron and Johnson solid. It can be constructed in different approaches. This shape also has alternative names called Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron; these names mean the 12-sided polyhedron.

<span class="mw-page-title-main">Hebesphenomegacorona</span> 89th Johnson solid (21 faces)

In geometry, the hebesphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. It has 21 faces, 18 triangles and 3 squares, 33 edges, and 14 vertices.

<span class="mw-page-title-main">Sphenomegacorona</span> 88th Johnson solid (18 faces)

In geometry, the sphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Sphenocorona</span> 86th Johnson solid (14 faces)

In geometry, the sphenocorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Augmented sphenocorona</span> 87th Johnson solid (17 faces)

In geometry, the augmented sphenocorona is the Johnson solid that can be constructed by attaching an equilateral square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Gyroelongated pentagonal bicupola</span> 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Elongated triangular cupola</span> 18th Johnson solid

In geometry, the elongated triangular cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular cupola by attaching a hexagonal prism to its base.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

<span class="mw-page-title-main">Gyroelongated triangular bicupola</span> 44th Johnson solid

In geometry, the gyroelongated triangular bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a triangular bicupola by inserting a hexagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Gyroelongated pentagonal cupolarotunda</span> 47th Johnson solid

In geometry, the gyroelongated pentagonal cupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal cupolarotunda by inserting a decagonal antiprism between its two halves.

References

  1. Holme, Audun (2010). Geometry: Our Cultural Heritage. Springer. p. 99. doi:10.1007/978-3-642-14441-7. ISBN   978-3-642-14441-7.
  2. 1 2 Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics . 18: 169–200. doi:10.4153/cjm-1966-021-8. MR   0185507. Zbl   0132.14603.
  3. 1 2 Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR   0290245.
  4. Francis, Darryl (2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  5. Timofeenko, A. V. (2009). "The non-Platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Science. 162 (5): 725. doi:10.1007/s10958-009-9655-0. S2CID   120114341.