Sphenocorona

Last updated
Sphenocorona
Sphenocorona.png
Type Johnson
J85J86J87
Faces 12 triangles
2 squares
Edges 22
Vertices 10
Vertex configuration 4(33.4)
2(32.42)
2x2(35)
Symmetry group C2v
Dual polyhedron -
Properties convex
Net
Johnson solid 86 net.png
3D model of a sphenocorona J86 sphenocorona.stl
3D model of a sphenocorona

In geometry, the sphenocorona is one of the Johnson solids (J86). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Johnson uses the prefix spheno- to refer to a wedge-like complex formed by two adjacent lunes , a lune being a square with equilateral triangles attached on opposite sides. Likewise, the suffix -corona refers to a crownlike complex of 8 equilateral triangles. Joining both complexes together results in the sphenocorona. [2]

Construction and properties

Let be the smallest positive root of the quartic polynomial . Then, Cartesian coordinates of a sphenocorona with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by reflections about the xz-plane and the yz-plane. [3]

The sphenocorona has 12 equilateral triangles and 2 squares as its faces. [4] A convex polyhedron in which all faces are regular polygons is called a Johnson solid, and the sphenocorona is among them, enumerated as the 86th Johnson solid . [5]

The surface area of a sphenocorona with edge length can be calculated as: [4]

and its volume as: [4]

Variations

The sphenocorona is also the vertex figure of the isogonal n-gonal double antiprismoid where n is an odd number greater than one, including the grand antiprism with pairs of trapezoid rather than square faces.

Grand antiprism verf.png

See also

Related Research Articles

<span class="mw-page-title-main">Gyroelongated square cupola</span>

In geometry, the gyroelongated square cupola is one of the Johnson solids (J23). As the name suggests, it can be constructed by gyroelongating a square cupola (J4) by attaching an octagonal antiprism to its base. It can also be seen as a gyroelongated square bicupola (J45) with one square bicupola removed.

<span class="mw-page-title-main">Gyroelongated pentagonal rotunda</span>

In geometry, the gyroelongated pentagonal rotunda is one of the Johnson solids (J25). As the name suggests, it can be constructed by gyroelongating a pentagonal rotunda (J6) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal birotunda (J48) with one pentagonal rotunda removed.

<span class="mw-page-title-main">Square gyrobicupola</span> 29th Johnson solid; 2 square cupolae joined base-to-base

In geometry, the square gyrobicupola is one of the Johnson solids. Like the square orthobicupola, it can be obtained by joining two square cupolae along their bases. The difference is that in this solid, the two halves are rotated 45 degrees with respect to one another.

<span class="mw-page-title-main">Gyroelongated pentagonal birotunda</span> 48th Johnson solid

In geometry, the gyroelongated pentagonal birotunda is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal birotunda by inserting a decagonal antiprism between its two halves.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

<span class="mw-page-title-main">Sphenomegacorona</span> 88th Johnson solid (18 faces)

In geometry, the sphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

<span class="mw-page-title-main">Elongated pentagonal cupola</span> 20th Johnson solid

In geometry, the elongated pentagonal cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal cupola by attaching a decagonal prism to its base. The solid can also be seen as an elongated pentagonal orthobicupola with its "lid" removed.

<span class="mw-page-title-main">Gyroelongated pentagonal cupola</span>

In geometry, the gyroelongated pentagonal cupola is one of the Johnson solids (J24). As the name suggests, it can be constructed by gyroelongating a pentagonal cupola (J5) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal bicupola (J46) with one pentagonal cupola removed.

<span class="mw-page-title-main">Pentagonal orthobicupola</span> 30th Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by joining two pentagonal cupolae along their decagonal bases, matching like faces. A 36-degree rotation of one cupola before the joining yields a pentagonal gyrobicupola.

<span class="mw-page-title-main">Pentagonal gyrobicupola</span> 31st Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal gyrobicupola is one of the Johnson solids. Like the pentagonal orthobicupola, it can be obtained by joining two pentagonal cupolae along their bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

<span class="mw-page-title-main">Elongated pentagonal gyrobicupola</span> 39th Johnson solid

In geometry, the elongated pentagonal gyrobicupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal gyrobicupola by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal cupolae through 36 degrees before inserting the prism yields an elongated pentagonal orthobicupola.

<span class="mw-page-title-main">Gyroelongated pentagonal bicupola</span> 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Elongated triangular cupola</span> 18th Johnson solid

In geometry, the elongated triangular cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular cupola by attaching a hexagonal prism to its base.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

<span class="mw-page-title-main">Pentagonal orthocupolarotunda</span> 32nd Johnson solid; pentagonal cupola and rotunda joined base-to-base

In geometry, the pentagonal orthocupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by joining a pentagonal cupola and a pentagonal rotunda along their decagonal bases, matching the pentagonal faces. A 36-degree rotation of one of the halves before the joining yields a pentagonal gyrocupolarotunda.

<span class="mw-page-title-main">Pentagonal gyrocupolarotunda</span> 33rd Johnson solid; pentagonal cupola and rotunda joined base-to-base

In geometry, the pentagonal gyrocupolarotunda is one of the Johnson solids. Like the pentagonal orthocupolarotunda, it can be constructed by joining a pentagonal cupola and a pentagonal rotunda along their decagonal bases. The difference is that in this solid, the two halves are rotated 36 degrees with respect to one another.

<span class="mw-page-title-main">Elongated pentagonal gyrocupolarotunda</span> 41st Johnson solid

In geometry, the elongated pentagonal gyrocupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal gyrocupolarotunda by inserting a decagonal prism between its halves. Rotating either the pentagonal cupola or the pentagonal rotunda through 36 degrees before inserting the prism yields an elongated pentagonal orthocupolarotunda.

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi: 10.4153/cjm-1966-021-8 , MR   0185507, S2CID   122006114, Zbl   0132.14603
  3. Timofeenko, A. V. (2009), "The non-Platonic and non-Archimedean noncomposite polyhedra", Journal of Mathematical Science, 162 (5): 718, doi:10.1007/s10958-009-9655-0, S2CID   120114341
  4. 1 2 3 Berman, Martin (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR   0290245
  5. Francis, Darryl (2013), "Johnson solids & their acronyms", Word Ways, 46 (3): 177