Hebesphenomegacorona

Last updated
Hebesphenomegacorona
Hebesphenomegacorona.png
Type Johnson
J88J89J90
Faces 3x2+3x4 triangles
1+2 squares
Edges 33
Vertices 14
Vertex configuration 4(32.42)
2+2x2(35)
4(34.4)
Symmetry group C2v
Dual polyhedron -
Properties convex
Net
Johnson solid 89 net.png
3D model of a hebesphenomegacorona J89 hebesphenomegacorona.stl
3D model of a hebesphenomegacorona

In geometry, the hebesphenomegacorona is one of the Johnson solids (J89). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. It has 21 faces, 18 triangles and 3 squares, 33 edges, and 14 vertices.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Johnson uses the prefix hebespheno- to refer to a blunt wedge-like complex formed by three adjacent lunes, a lune being a square with equilateral triangles attached on opposite sides. Likewise, the suffix -megacorona refers to a crownlike complex of 12 triangles. Joining both complexes together results in the hebesphenomegacorona. [1]

The icosahedron can be obtained from the hebesphenomegacorona by merging the middle of the three squares into an edge, turning the neighboring two squares into triangles.

Cartesian coordinates

Let a ≈ 0.21684 be the second smallest positive root of the polynomial

Then, Cartesian coordinates of a hebesphenomegacorona with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by reflections about the xz-plane and the yz-plane. [2]

Related Research Articles

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a "Johnson solid".

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Elongated square cupola</span> 19th Johnson solid

In geometry, the elongated square cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a square cupola by attaching an octagonal prism to its base. The solid can be seen as a rhombicuboctahedron with its "lid" removed.

<span class="mw-page-title-main">Elongated pentagonal rotunda</span>

In geometry, the elongated pentagonal rotunda is one of the Johnson solids (J21). As the name suggests, it can be constructed by elongating a pentagonal rotunda (J6) by attaching a decagonal prism to its base. It can also be seen as an elongated pentagonal orthobirotunda (J42) with one pentagonal rotunda removed.

<span class="mw-page-title-main">Square gyrobicupola</span> 29th Johnson solid; 2 square cupolae joined base-to-base

In geometry, the square gyrobicupola is one of the Johnson solids. Like the square orthobicupola, it can be obtained by joining two square cupolae along their bases. The difference is that in this solid, the two halves are rotated 45 degrees with respect to one another.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

<span class="mw-page-title-main">Sphenomegacorona</span> 88th Johnson solid (18 faces)

In geometry, the sphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Sphenocorona</span> 86th Johnson solid (14 faces)

In geometry, the sphenocorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Disphenocingulum</span> 90th Johnson solid (22 faces)

In geometry, the disphenocingulum or pentakis elongated gyrobifastigium is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Bilunabirotunda</span> 91st Johnson solid (14 faces)

In geometry, the bilunabirotunda is one of the Johnson solids. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Augmented sphenocorona</span> 87th Johnson solid (17 faces)

In geometry, the augmented sphenocorona is the Johnson solid that can be constructed by attaching an equilateral square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

<span class="mw-page-title-main">Elongated pentagonal cupola</span> 20th Johnson solid

In geometry, the elongated pentagonal cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal cupola by attaching a decagonal prism to its base. The solid can also be seen as an elongated pentagonal orthobicupola with its "lid" removed.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Gyroelongated pentagonal bicupola</span> 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Elongated triangular cupola</span> 18th Johnson solid

In geometry, the elongated triangular cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular cupola by attaching a hexagonal prism to its base.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

References

  1. 1 2 Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi: 10.4153/cjm-1966-021-8 , MR   0185507, Zbl   0132.14603 .
  2. Timofeenko, A. V. (2009-10-17). "The non-platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Sciences. 162 (5): 710–729. doi:10.1007/s10958-009-9655-0. ISSN   1072-3374. S2CID   120114341.