Hemopressin

Last updated
Hemopressin
Hemopressin.svg
Names
IUPAC name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-3-methyl-2-[[(2S)-pyrrolidine-2-carbonyl]amino]butanoyl]amino]-4-oxo-butanoyl]amino]-3-phenyl-propanoyl]amino]hexanoyl]amino]-3-phenyl-propanoyl]amino]-4-methyl-pentanoyl]amino]-3-hydroxy-propanoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C53H77N13O12/c1-30(2)22-37(47(71)65-42(28-67)51(75)64-41(53(77)78)25-34-27-56-29-58-34)60-49(73)39(24-33-16-9-6-10-17-33)61-46(70)36(18-11-12-20-54)59-48(72)38(23-32-14-7-5-8-15-32)62-50(74)40(26-43(55)68)63-52(76)44(31(3)4)66-45(69)35-19-13-21-57-35/h5-10,14-17,27,29-31,35-42,44,57,67H,11-13,18-26,28,54H2,1-4H3,(H2,55,68)(H,56,58)(H,59,72)(H,60,73)(H,61,70)(H,62,74)(H,63,76)(H,64,75)(H,65,71)(H,66,69)(H,77,78)/t35-,36-,37-,38-,39-,40-,41-,42-,44-/m0/s1 X mark.svgN
    Key: DUTLYPZZJJBEAJ-QISMNGAHSA-N X mark.svgN
  • InChI=1/C53H77N13O12/c1-30(2)22-37(47(71)65-42(28-67)51(75)64-41(53(77)78)25-34-27-56-29-58-34)60-49(73)39(24-33-16-9-6-10-17-33)61-46(70)36(18-11-12-20-54)59-48(72)38(23-32-14-7-5-8-15-32)62-50(74)40(26-43(55)68)63-52(76)44(31(3)4)66-45(69)35-19-13-21-57-35/h5-10,14-17,27,29-31,35-42,44,57,67H,11-13,18-26,28,54H2,1-4H3,(H2,55,68)(H,56,58)(H,59,72)(H,60,73)(H,61,70)(H,62,74)(H,63,76)(H,64,75)(H,65,71)(H,66,69)(H,77,78)/t35-,36-,37-,38-,39-,40-,41-,42-,44-/m0/s1
    Key: DUTLYPZZJJBEAJ-QISMNGAHBC
  • CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CCCCN)NC(=O)[C@H](Cc3ccccc3)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]4CCCN4
Properties
C53H77N13O12
Molar mass 1088.25838
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Hemopressin (Hp) is an alpha hemoglobin fragment with the sequence PVNFKFLSH, originally identified in extracts of rat brain using an enzyme capture technique. [1] It binds cannabinoid receptors, acting as an inverse agonist at CB1 receptors. [2] Longer forms of hemopressin containing 2-3 additional amino acids on the N-terminus have been identified in extracts of mouse brain. These longer hemopressin peptides, named RVD-Hpα and VD-Hpα, bind to CB1 receptors and were originally reported to be agonists. [3] In addition to the Hp peptides from alpha hemoglobin, a related peptide from beta hemoglobin has been found in mouse brain extracts; this peptide, named VD-Hpβ, is also an agonist at CB1 cannabinoid receptors. [3] Hemopressin is not an endogenous peptide but rather an extraction artefact [Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, Poetz O, Pluschke G, Gertsch J. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012 Oct 26;287(44):36944-67. doi: 10.1074/jbc.M112.382481. Epub 2012 Sep 5.]. The only endogenous peptide found endogenously at physiological conditions is RVD-hemopressin (pepcan-12), which has more recently been shown to be a negative allosteric modulator of CB1 receptors and positive allosteric modulator of CB2 receptors [Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, Poetz O, Pluschke G, Gertsch J. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012 Oct 26;287(44):36944-67. doi: 10.1074/jbc.M112.382481. Epub 2012 Sep 5.] [Petrucci V, Chicca A, Glasmacher S, Paloczi J, Cao Z, Pacher P, Gertsch J. Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci Rep. 2017 Aug 25;7(1):9560. doi: 10.1038/s41598-017-09808-8.]. RVD-hemopressin (pepcan-12) is generated from a pro-peptide called pepcan-23 and these peptides are exclusively found in noradrenergic neurons in the brain and in the adrenal medulla [Hofer SC, Ralvenius WT, Gachet MS, Fritschy JM, Zeilhofer HU, Gertsch J. Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla. Neuropharmacology. 2015 Nov;98:78-89. doi: 10.1016/j.neuropharm.2015.03.021. Epub 2015 Mar 31.]

Contents

The original Hp peptide reduces sensitivity to painful stimuli in an experimental model of hyperalgesia. [4] Hp also reduces food intake in mice. [5] However, it remains to be shown if Hp is an endogenous brain peptide. The original purification used boiling acid to extract the peptide from rat brain, and hot acid can specifically cleave D-P bonds. The N-terminally-extended forms RVD-Hpα and VD-Hpα may represent the true endogenous forms. [6]

Role in diet

Scientists at the University of Manchester have discovered that hemopressin could be used as an appetite suppressant without having the side effects of many other drugs that are used for this purpose. In laboratory tests hemopressin was administrated to mice and rats, which significantly reduced food intake. Hemopressin works by affecting the reward centres of the brain which make us feel happy when we eat too much. A further research should be carried out in order to confirm these effects and the safety on people. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Anandamide</span> Chemical compound (fatty acid neurotransmitter)

Anandamide (ANA), also known as N-arachidonoylethanolamine (AEA), is a fatty acid neurotransmitter. Anandamide was the first endocannabinoid to be discovered: it participates in the body's endocannabinoid system by binding to cannabinoid receptors, the same receptors that the psychoactive compound THC in cannabis acts on. Anandamide is found in nearly all tissues in a wide range of animals. Anandamide has also been found in plants, including small amounts in chocolate. The name 'anandamide' is taken from the Sanskrit word ananda, which means "joy, bliss, delight", plus amide.

<span class="mw-page-title-main">Cannabinoid</span> Compounds found in cannabis

Cannabinoids are compounds found in the cannabis plant or synthetic compounds that can interact with the endocannabinoid system. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC) (Delta-9-THC), the primary intoxicating compound in cannabis. Cannabidiol (CBD) is another major constituent of some cannabis plants. At least 113 distinct cannabinoids have been isolated from cannabis. It was reported in 2020 that cannabinoids can be found in other plants such as rhododendron, licorice and liverwort, and earlier in Echinacea.

<span class="mw-page-title-main">Cannabinoid receptor</span> Group of receptors to cannabinoid compounds

Cannabinoid receptors, located throughout the body, are part of the endocannabinoid system – a class of cell membrane receptors in the G protein-coupled receptor superfamily. As is typical of G protein-coupled receptors, the cannabinoid receptors contain seven transmembrane spanning domains. Cannabinoid receptors are activated by three major groups of ligands: endocannabinoids; plant cannabinoids ; and synthetic cannabinoids. All of the endocannabinoids and phytocannabinoids are lipophilic.

<span class="mw-page-title-main">CP 55,940</span> Chemical compound

CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC. CP 55,940 was created by Pfizer in 1974 but was never marketed. It is currently used to study the endocannabinoid system.

Depolarization-induced suppression of inhibition is the classical and original electrophysiological example of endocannabinoid function in the central nervous system. Prior to the demonstration that depolarization-induced suppression of inhibition was dependent on the cannabinoid CB1 receptor function, there was no way of producing an in vitro endocannabinoid mediated effect.

The endocannabinoid system (ECS) is a biological system composed of endocannabinoids, which are endogenous lipid-based retrograde neurotransmitters that bind to cannabinoid receptors (CBRs), and cannabinoid receptor proteins that are expressed throughout the vertebrate central nervous system and peripheral nervous system. The endocannabinoid system remains under preliminary research, but may be involved in regulating physiological and cognitive processes, including fertility, pregnancy, pre- and postnatal development, various activity of immune system, appetite, pain-sensation, mood, and memory, and in mediating the pharmacological effects of cannabis. The ECS plays an important role in multiple aspects of neural functions, including the control of movement and motor coordination, learning and memory, emotion and motivation, addictive-like behavior and pain modulation, among others.

<span class="mw-page-title-main">2-Arachidonoylglycerol</span> Chemical compound

2-Arachidonoylglycerol (2-AG) is an endocannabinoid, an endogenous agonist of the CB1 receptor and the primary endogenous ligand for the CB2 receptor. It is an ester formed from the omega-6 fatty acid arachidonic acid and glycerol. It is present at relatively high levels in the central nervous system, with cannabinoid neuromodulatory effects. It has been found in maternal bovine and human milk. The chemical was first described in 1994-1995, although it had been discovered some time before that. The activities of phospholipase C (PLC) and diacylglycerol lipase (DAGL) mediate its formation. 2-AG is synthesized from arachidonic acid-containing diacylglycerol (DAG).

<span class="mw-page-title-main">2-Arachidonyl glyceryl ether</span> Chemical compound

2-Arachidonyl glyceryl ether is a putative endocannabinoid discovered by Lumír Hanuš and colleagues at the Hebrew University of Jerusalem, Israel. It is an ether formed from the alcohol analog of arachidonic acid and glycerol. Its isolation from porcine brain and its structural elucidation and synthesis were described in 2001.

<span class="mw-page-title-main">GPR55</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor 55 also known as GPR55 is a G protein-coupled receptor that in humans is encoded by the GPR55 gene.

<span class="mw-page-title-main">Cannabinoid receptor type 1</span> Mammalian protein found in Homo sapiens

Cannabinoid receptor type 1 (CB1), also known as cannabinoid receptor 1, is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by: endocannabinoids, a group of retrograde neurotransmitters that include anandamide and 2-arachidonoylglycerol (2-AG); plant phytocannabinoids, such as the compound THC which is an active ingredient of the psychoactive drug cannabis; and, synthetic analogs of THC. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin (THCV).

<span class="mw-page-title-main">Cannabinoid receptor type 2</span> Mammalian protein found in Homo sapiens

The cannabinoid receptor type 2, abbreviated as CB2, is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene. It is closely related to the cannabinoid receptor type 1 (CB1), which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol (THC), the active agent in cannabis, and other phytocannabinoids (plant cannabinoids). The principal endogenous ligand for the CB2 receptor is 2-Arachidonoylglycerol (2-AG).

<i>N</i>-Arachidonoyl dopamine Chemical compound

N-Arachidonoyl dopamine (NADA) is an endocannabinoid that acts as an agonist of the CB1 receptor and the transient receptor potential V1 (TRPV1) ion channel. NADA was first described as a putative endocannabinoid (agonist for the CB1 receptor) in 2000 and was subsequently identified as an endovanilloid (agonist for TRPV1) in 2002. NADA is an endogenous arachidonic acid based lipid found in the brain of rats, with especially high concentrations in the hippocampus, cerebellum, and striatum. It activates the TRPV1 channel with an EC50 of approximately of 50 nM which makes it the putative endogenous TRPV1 agonist.

<span class="mw-page-title-main">JWH-018</span> Chemical compound

JWH-018 (1-pentyl-3-(1-naphthoyl)indole) or AM-678 is an analgesic chemical from the naphthoylindole family that acts as a full agonist at both the CB1 and CB2 cannabinoid receptors, with some selectivity for CB2. It produces effects in animals similar to those of tetrahydrocannabinol (THC), a cannabinoid naturally present in cannabis, leading to its use in synthetic cannabis products that in some countries are sold legally as "incense blends".

A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid, is a non-competitive CB1/CB2 receptor antagonist. And Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.

<span class="mw-page-title-main">AM-1241</span> Chemical compound

AM-1241 (1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-5-nitrobenzoyl)indole) is a chemical from the aminoalkylindole family that acts as a potent and selective agonist for the cannabinoid receptor CB2, with a Ki of 3.4 nM at CB2 and 80 times selectivity over the related CB1 receptor. It has analgesic effects in animal studies, particularly against "atypical" pain such as hyperalgesia and allodynia. This is thought to be mediated through CB2-mediated peripheral release of endogenous opioid peptides, as well as direct activation of the TRPA1 channel. It has also shown efficacy in the treatment of amyotrophic lateral sclerosis in animal models.

<span class="mw-page-title-main">Abnormal cannabidiol</span> Synthetic, cannabinoid-like compound

Abnormal cannabidiol (Abn-CBD) is a synthetic regioisomer of cannabidiol, which unlike most other cannabinoids produces vasodilator effects, lowers blood pressure, and induces cell migration, cell proliferation and mitogen-activated protein kinase activation in microglia, but without producing any psychoactive effects.

RVD-Hpα (pepcan-12) is an endogenous neuropeptide found in human and mammalian brain, which was originally proposed to act as a selective agonist for the CB1 cannabinoid receptor. It is a 12-amino acid polypeptide having the amino acid sequence Arg-Val-Asp-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His and is an N-terminal extended form of hemopressin, a 9-AA polypeptide derived from the α1 subunit of hemoglobin which has previously been shown to act as a CB1 inverse agonist. All three polypeptides have been isolated from various mammalian species, with RVD-Hpα being one of the more abundant neuropeptides expressed in mouse brain, and these neuropeptides represent a new avenue for cannabinoid research distinct from the previously known endogenous lipid-derived cannabinoid agonists such as anandamide. Recently it was shown that RVD-Hpα (also called Pepcan-12) is a potent negative allosteric modulator at CB1 receptors, together with other newly described N-terminally extended peptides (pepcans).

Endocannabinoid reuptake inhibitors (eCBRIs), also called cannabinoid reuptake inhibitors (CBRIs), are drugs which limit the reabsorption of endocannabinoid neurotransmitters by the releasing neuron.

4-<i>O</i>-Methylhonokiol Chemical compound

4-O-Methylhonokiol is a neolignan, a type of phenolic compound. It is found in the bark of Magnolia grandiflora and in M. virginiana flowers.

Guineesine is an alkaloid isolated from long pepper and black pepper.

References

  1. Rioli V, Gozzo FC, Heimann AS, et al. (March 2003). "Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme". J. Biol. Chem. 278 (10): 8547–55. doi: 10.1074/jbc.M212030200 . PMID   12500972.
  2. Heimann AS, Gomes I, Dale CS, et al. (December 2007). "Hemopressin is an inverse agonist of CB1 cannabinoid receptors". Proc. Natl. Acad. Sci. U.S.A. 104 (51): 20588–93. Bibcode:2007PNAS..10420588H. doi: 10.1073/pnas.0706980105 . PMC   2154475 . PMID   18077343.
  3. 1 2 Gomes I, Grushko JS, Golebiewska U, et al. (September 2009). "Novel endogenous peptide agonists of cannabinoid receptors". FASEB J. 23 (9): 3020–9. doi:10.1096/fj.09-132142. PMC   2735371 . PMID   19380512.
  4. Dale CS, Pagano Rde L, Rioli V, et al. (March 2005). "Antinociceptive action of hemopressin in experimental hyperalgesia". Peptides. 26 (3): 431–6. doi:10.1016/j.peptides.2004.10.026. PMID   15652650. S2CID   1402750.
  5. Dodd GT, Mancini G, Lutz B, et al. (May 2010). "The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice". J. Neurosci. 30 (21): 7369–76. doi: 10.1523/JNEUROSCI.5455-09.2010 . PMC   6632410 . PMID   20505104.
  6. Gelman JS, Sironi J, Castro LM, et al. (May 2010). "Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice". J. Neurochem. 113 (4): 871–80. doi:10.1111/j.1471-4159.2010.06653.x. PMC   2867603 . PMID   20202081. Archived from the original on 2012-10-21.
  7. "Health | Life | UK Life".