Methylmalonyl-CoA

Last updated
Methylmalonyl-CoA
Methylmalonyl-CoA.svg
Names
Systematic IUPAC name
(9R)-1-[(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]-3,5,9-trihydroxy-8,8,20-trimethyl-3,5,10,14,19-pentaoxo-2,4,6-trioxa-18-thia-11,15-diaza-3λ5,5λ5-diphosphahenicosan-21-oic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/C25H40N7O19P3S/c1-12(23(37)38)24(39)55-7-6-27-14(33)4-5-28-21(36)18(35)25(2,3)9-48-54(45,46)51-53(43,44)47-8-13-17(50-52(40,41)42)16(34)22(49-13)32-11-31-15-19(26)29-10-30-20(15)32/h10-13,16-18,22,34-35H,4-9H2,1-3H3,(H,27,33)(H,28,36)(H,37,38)(H,43,44)(H,45,46)(H2,26,29,30)(H2,40,41,42)/t12?,13-,16-,17-,18+,22-/m1/s1 X mark.svgN
    Key: MZFOKIKEPGUZEN-FBMOWMAESA-N X mark.svgN
  • InChI=1/C25H40N7O19P3S/c1-12(23(37)38)24(39)55-7-6-27-14(33)4-5-28-21(36)18(35)25(2,3)9-48-54(45,46)51-53(43,44)47-8-13-17(50-52(40,41)42)16(34)22(49-13)32-11-31-15-19(26)29-10-30-20(15)32/h10-13,16-18,22,34-35H,4-9H2,1-3H3,(H,27,33)(H,28,36)(H,37,38)(H,43,44)(H,45,46)(H2,26,29,30)(H2,40,41,42)/t12?,13-,16-,17-,18+,22-/m1/s1
    Key: MZFOKIKEPGUZEN-FBMOWMAEBZ
  • CC(C(=O)O)C(=O)SCCNC(=O)CCNC(=O)[C@@H](C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@@H](O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
Properties
C25H40N7O19P3S
Molar mass 867.608 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Methylmalonyl-CoA is the thioester consisting of coenzyme A linked to methylmalonic acid. It is an important intermediate in the biosynthesis of succinyl-CoA, which plays an essential role in the tricarboxylic acid cycle (aka the Citric Acid Cycle, or Krebs Cycle). [1] The compound is sometimes referred to as "methylmalyl-CoA". [2]

Contents

Biosynthesis and metabolism

Methylmalonyl-CoA pathway Methylmalonic acid pathway.svg
Methylmalonyl-CoA pathway

Methylmalonyl-CoA results from the metabolism of fatty acid with an odd number of carbons, of amino acids valine, isoleucine, methionine, threonine or of cholesterol side-chains, forming Propionyl-CoA. [3] The latter is also formed from propionic acid, which bacteria produce in the intestine. [3] Propionyl-CoA and bicarbonate are converted to Methylmalonyl-CoA by the enzyme propionyl-CoA Carboxylase. [1] It then is converted into succinyl-CoA by methylmalonyl-CoA mutase (MUT). This reaction is a reversible isomerization. In this way, the compound enters the Citric Acid Cycle. The following diagram demonstrates the aforementioned reaction: [2]

Propionyl CoA + Bicarbonate Methylmalonyl CoA Succinyl CoA

Vitamin B12

Vitamin B12 plays an integral role in this reaction. Coenzyme B12 (adenosyl-cobalamin) is an organometallic form of Vitamin B12 and serves as the cofactor of Methylmalonyl-CoA mutase, which is an essential enzyme in the human body. [4] The transformation of Methylmalonyl-CoA to Succinyl-CoA by this enzyme is a radical reaction. [4]

Methylmalonic Acidemia (MMA)

This disease occurs when methylmalonyl-CoA mutase is unable to isomerize sufficient amounts of methylmalonyl-CoA into succinyl-CoA. [5] This causes a buildup of propionic and/or methylmalonic acid, which has effects on infants ranging from severe brain damage to death. [3] The disease is linked to Vitamin B12, which is the metabolic precursor to methylmalonyl-CoA mutase. [5] [6]

Combined malonic and methylmalonic aciduria (CMAMMA)

In the metabolic disease combined malonic and methylmalonic aciduria (CMAMMA), acyl-CoA synthetase family member 3 (ACSF3) is reduced, which converts toxic methylmalonic acid to methylmalonyl-CoA and thus supplies it to the citric acid cycle. [7] [8] The result is an accumulation of methylmalonic acid.

Related Research Articles

<span class="mw-page-title-main">Propionic acid</span> Carboxylic acid with chemical formula CH3CH2CO2H

Propionic acid is a naturally occurring carboxylic acid with chemical formula CH
3
CH
2
CO
2
H
. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH
3
CH
2
CO
2
as well as the salts and esters of propionic acid are known as propionates or propanoates.

<span class="mw-page-title-main">Methylmalonic acidemia</span> Medical condition

Methylmalonic acidemia, also called methylmalonic aciduria, is an autosomal recessive metabolic disorder that disrupts normal amino acid metabolism. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.

Propionic acidemia, also known as propionic aciduria or propionyl-CoA carboxylase deficiency, is a rare autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.

Succinyl-coenzyme A, abbreviated as succinyl-CoA or SucCoA, is a thioester of succinic acid and coenzyme A.

The oxoglutarate dehydrogenase complex (OGDC) or α-ketoglutarate dehydrogenase complex is an enzyme complex, most commonly known for its role in the citric acid cycle.

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

Calcium propanoate or calcium propionate has the formula Ca(C2H5COO)2. It is the calcium salt of propanoic acid.

<span class="mw-page-title-main">Malonyl-CoA decarboxylase deficiency</span> Medical condition

Malonic aciduria or malonyl-CoA decarboxylase deficiency (MCD) is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into acetyl-CoA and carbon dioxide.

<span class="mw-page-title-main">Methylmalonyl-CoA mutase deficiency</span> Medical condition

Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.

<span class="mw-page-title-main">Methylmalonyl-CoA mutase</span> Mammalian protein found in Homo sapiens

Methylmalonyl-CoA mutase (EC 5.4.99.2, MCM), mitochondrial, also known as methylmalonyl-CoA isomerase, is a protein that in humans is encoded by the MUT gene. This vitamin B12-dependent enzyme catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA in humans. Mutations in MUT gene may lead to various types of methylmalonic aciduria.

Propionyl-CoA is a coenzyme A derivative of propionic acid. It is composed of a 24 total carbon chain and its production and metabolic fate depend on which organism it is present in. Several different pathways can lead to its production, such as through the catabolism of specific amino acids or the oxidation of odd-chain fatty acids. It later can be broken down by propionyl-CoA carboxylase or through the methylcitrate cycle. In different organisms, however, propionyl-CoA can be sequestered into controlled regions, to alleviate its potential toxicity through accumulation. Genetic deficiencies regarding the production and breakdown of propionyl-CoA also have great clinical and human significance.

<span class="mw-page-title-main">Propionyl-CoA carboxylase</span>

Propionyl-CoA carboxylase (EC 6.4.1.3, PCC) catalyses the carboxylation reaction of propionyl-CoA in the mitochondrial matrix. PCC has been classified both as a ligase and a lyase. The enzyme is biotin-dependent. The product of the reaction is (S)-methylmalonyl CoA.

<span class="mw-page-title-main">Methylmalonic acid</span> Chemical compound

Methylmalonic acid (MMA) is a dicarboxylic acid that is a C-methylated derivative of malonic acid.

<span class="mw-page-title-main">Methylmalonyl CoA epimerase</span>

Methylmalonyl CoA epimerase is an enzyme involved in fatty acid catabolism that is encoded in human by the "MCEE" gene located on chromosome 2. It is routinely and incorrectly labeled as "methylmalonyl-CoA racemase". It is not a racemase because the CoA moiety has 5 other stereocenters.

α-Ketobutyric acid Chemical compound

α-Ketobutyric acid is an organic compound with the formula CH3CH2C(O)CO2H. It is a colorless solid that melts just above room temperature. Its conjugate base α-ketobutyrate is the predominant form found in nature (near neutral pH). It results from the lysis of cystathionine. It is also one of the degradation products of threonine, produced by the catabolism of the amino acid by threonine dehydratase. It is also produced by the degradation of homocysteine and the metabolism of methionine.

<span class="mw-page-title-main">Cyanocobalamin</span> Form of vitamin B-12

Cyanocobalamin is a form of vitamin B
12
used to treat and prevent vitamin B
12
deficiency
except in the presence of cyanide toxicity. The deficiency may occur in pernicious anemia, following surgical removal of the stomach, with fish tapeworm, or due to bowel cancer. It is used by mouth, by injection into a muscle, or as a nasal spray.

Odd-chain fatty acids are those fatty acids that contain an odd number of carbon atoms. In addition to being classified according to their saturation or unsaturation, fatty acids are also classified according to their odd or even numbers of constituent carbon atoms. With respect to natural abundance, most fatty acids are even chain, e.g. palmitic (C16) and stearic (C18). In terms of physical properties, odd and even fatty acids are similar, generally being colorless, soluble in alcohols, and often somewhat oily. The odd-chain fatty acids are biosynthesized and metabolized slightly differently from the even-chained relatives. In addition to the usual C12-C22 long chain fatty acids, some very long chain fatty acids (VLCFAs) are also known. Some of these VLCFAs are also of the odd-chain variety.

Combined malonic and methylmalonic aciduria (CMAMMA), also called combined malonic and methylmalonic acidemia is an inherited metabolic disease characterized by elevated levels of malonic acid and methylmalonic acid. However, the methylmalonic acid levels exceed those of malonic acid. Some researchers have hypothesized that CMAMMA might be one of the most common forms of methylmalonic acidemia, and possibly one of the most common inborn errors of metabolism. Due to being infrequently diagnosed, it most often goes undetected.

References

  1. 1 2 Wongkittichote P, Ah Mew N, Chapman KA (December 2017). "Propionyl-CoA carboxylase - A review". Molecular Genetics and Metabolism. 122 (4): 145–152. doi:10.1016/j.ymgme.2017.10.002. PMC   5725275 . PMID   29033250.
  2. 1 2 Nelson DL, Cox MM (2005). Principles of Biochemistry (4th ed.). New York: W. H. Freeman. ISBN   0-7167-4339-6.
  3. 1 2 3 Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. (September 2014). "Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia". Orphanet Journal of Rare Diseases. 9 (1): 130. doi: 10.1186/s13023-014-0130-8 . PMC   4180313 . PMID   25205257.
  4. 1 2 Kräutler B (2012). Stanger O (ed.). Biochemistry of B12-cofactors in human metabolism. Subcellular Biochemistry. Vol. 56. Dordrecht: Springer Netherlands. pp. 323–346. doi:10.1007/978-94-007-2199-9_17. ISBN   978-94-007-2198-2. PMID   22116707.{{cite book}}: |work= ignored (help)
  5. 1 2 Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME (June 2012). "Role of vitamin B12 on methylmalonyl-CoA mutase activity". Journal of Zhejiang University. Science. B. 13 (6): 423–437. doi:10.1631/jzus.B1100329. PMC   3370288 . PMID   22661206.
  6. Froese DS, Fowler B, Baumgartner MR (July 2019). "Vitamin B12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation". Journal of Inherited Metabolic Disease. 42 (4): 673–685. doi: 10.1002/jimd.12009 . PMID   30693532.
  7. Gabriel MC, Rice SM, Sloan JL, Mossayebi MH, Venditti CP, Al-Kouatly HB (April 2021). "Considerations of expanded carrier screening: Lessons learned from combined malonic and methylmalonic aciduria". Molecular Genetics & Genomic Medicine. 9 (4): e1621. doi:10.1002/mgg3.1621. PMC   8123733 . PMID   33625768.
  8. Bowman CE, Wolfgang MJ (January 2019). "Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism". Advances in Biological Regulation. 71: 34–40. doi:10.1016/j.jbior.2018.09.002. PMC   6347522 . PMID   30201289.