Niobium carbide

Last updated
Niobium carbide
Identifiers
ChemSpider
ECHA InfoCard 100.031.913 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • NbC:235-117-8
PubChem CID
  • NbC: 159431  has wrong formula
  • Nb2C: 165961  has wrong formula
Properties
NbC
Molar mass 104.917 g/mol
Density 7.820 g/cm3
Melting point 3,608 °C (6,526 °F; 3,881 K)
Structure
Cubic, cF8
Related compounds
Related Refractory ceramic materials
zirconium nitride, tantalum carbide, zirconium carbide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Niobium carbide (Nb C and Nb2C) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering and is a frequent additive as grain growth inhibitor in cemented carbides. It has the appearance of a brown-gray metallic powder with purple lustre. It is highly corrosion resistant.

Contents

Synthesis

Niobium carbide can be produced by the heating of niobium oxide in a vacuum at 1800 °C and adding coke.

Properties and uses

Niobium carbide has a Young's modulus of approximately 452 GPa, and a shear modulus of 182 GPa. [1] It has a Poisson's ratio of 0.227. [1]

Niobium carbide is a frequent intentional product in microalloyed steels due to its extremely low solubility product in austenite, the lowest of all the refractory metal carbides. This means that micrometre-sized precipitates of NbC are virtually insoluble in steels at all processing temperatures and their location at grain boundaries helps prevent excessive grain growth in these steels. This is of enormous benefit, and the cornerstone of microalloyed steels, because it is their uniform, very fine grain size that ensures both toughness and strength. The only commonly occurring compound with a lower solubility and hence, greater potential for restricting the grain growth of steels is titanium nitride.

Depending on grain size, niobium carbide may burn at 200-800 °C in air. A layer of niobium carbide can be created by chemical vapor deposition. Zirconium carbide and niobium carbide can be used as refractory coatings in nuclear reactors.

Natural occurrence

Niobocarbide - the naturally occurring form of niobium carbide - shall be regarded as an extremely rare mineral. [2]

Related Research Articles

<span class="mw-page-title-main">Niobium</span> Chemical element, symbol Nb and atomic number 41

Niobium is a chemical element with chemical symbol Nb and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has similar ductility to iron. Niobium oxidizes in Earth's atmosphere very slowly, hence its application in jewelry as a hypoallergenic alternative to nickel. Niobium is often found in the minerals pyrochlore and columbite, hence the former name "columbium". Its name comes from Greek mythology: Niobe, daughter of Tantalus, the namesake of tantalum. The name reflects the great similarity between the two elements in their physical and chemical properties, which makes them difficult to distinguish.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">High-strength low-alloy steel</span> Type of alloy steel

High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties. They have a carbon content between 0.05 and 0.25% to retain formability and weldability. Other alloying elements include up to 2.0% manganese and small quantities of copper, nickel, niobium, nitrogen, vanadium, chromium, molybdenum, titanium, calcium, rare-earth elements, or zirconium. Copper, titanium, vanadium, and niobium are added for strengthening purposes. These elements are intended to alter the microstructure of carbon steels, which is usually a ferrite-pearlite aggregate, to produce a very fine dispersion of alloy carbides in an almost pure ferrite matrix. This eliminates the toughness-reducing effect of a pearlitic volume fraction yet maintains and increases the material's strength by refining the grain size, which in the case of ferrite increases yield strength by 50% for every halving of the mean grain diameter. Precipitation strengthening plays a minor role, too. Their yield strengths can be anywhere between 250–590 megapascals (36,000–86,000 psi). Because of their higher strength and toughness HSLA steels usually require 25 to 30% more power to form, as compared to carbon steels.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Tungsten carbide</span> Hard, dense and stiff chemical compound

Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing shells and jewelry.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

<span class="mw-page-title-main">Tantalum carbide</span> Chemical compound

Tantalum carbides (TaC) form a family of binary chemical compounds of tantalum and carbon with the empirical formula TaCx, where x usually varies between 0.4 and 1. They are extremely hard, brittle, refractory ceramic materials with metallic electrical conductivity. They appear as brown-gray powders, which are usually processed by sintering.

<span class="mw-page-title-main">Titanium carbide</span> Chemical compound

Titanium carbide, TiC, is an extremely hard refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride crystal structure.

<span class="mw-page-title-main">Titanium nitride</span> Ceramic material

Titanium nitride is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

<span class="mw-page-title-main">Chromium(II) carbide</span> Chemical compound

Chromium(II) carbide is a ceramic compound that exists in several chemical compositions: Cr3C2, Cr7C3, and Cr23C6. At standard conditions it exists as a gray solid. It is extremely hard and corrosion resistant. It is also a refractory compound, which means that it retains its strength at high temperatures as well. These properties make it useful as an additive to metal alloys. When chromium carbide crystals are integrated into the surface of a metal it improves the wear resistance and corrosion resistance of the metal, and maintains these properties at elevated temperatures. The hardest and most commonly used composition for this purpose is Cr3C2.

<span class="mw-page-title-main">Zirconium carbide</span> Chemical compound

Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering.

<span class="mw-page-title-main">Intergranular corrosion</span> When crystallite boundaries are more corrosive than their interiors

In materials science, intergranular corrosion (IGC), also known as intergranular attack (IGA), is a form of corrosion where the boundaries of crystallites of the material are more susceptible to corrosion than their insides.

Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties.

<span class="mw-page-title-main">Cemented carbide</span> Type of composite material

Cemented carbides are a class of hard materials used extensively for cutting tools, as well as in other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

Macor is the trademark for a machinable glass-ceramic developed and sold by Corning Inc. It is a white material that looks somewhat like porcelain. Macor is a good thermal insulator and is stable up to temperatures of 1000 °C, with very little thermal expansion or outgassing. It can be machined using standard metalworking tools.

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

<span class="mw-page-title-main">Niobium diboride</span> Chemical compound

Niobium diboride (NbB2) is a highly covalent refractory ceramic material with a hexagonal crystal structure.

References

  1. 1 2 Brenton, R.F; Saunders, C.R; Kempter, C.P (1969). "Elastic properties and thermal expansion of niobium mono-carbide to high temperatures". Journal of the Less Common Metals. 19 (3): 273–278. doi:10.1016/0022-5088(69)90103-9.
  2. Mindat, http://www.mindat.org/min-7196.html