PTPN6

Last updated
PTPN6
Protein PTPN6 PDB 1fpr.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PTPN6 , HCP, HCPH, HPTP1C, PTP-1C, SH-PTP1, SHP-1, SHP-1L, SHP1, protein tyrosine phosphatase, non-receptor type 6, protein tyrosine phosphatase non-receptor type 6
External IDs OMIM: 176883 MGI: 96055 HomoloGene: 56589 GeneCards: PTPN6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002831
NM_080548
NM_080549

NM_001077705
NM_013545

RefSeq (protein)

NP_002822
NP_536858
NP_536859

NP_001071173
NP_038573

Location (UCSC) Chr 12: 6.95 – 6.96 Mb Chr 6: 124.7 – 124.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Tyrosine-protein phosphatase non-receptor type 6, also known as Src homology region 2 domain-containing phosphatase-1 (SHP-1), is an enzyme that in humans is encoded by the PTPN6 gene. [5]

Function

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells. This PTP has been shown to interact with, and dephosphorylate a wide spectrum of phospho-proteins involved in hematopoietic cell signaling, (e.g., the LYN-CD22-SHP-1 pathway). Multiple alternatively spliced variants of this gene, which encode distinct isoforms, have been reported. [6]

Expression

SHP-1 gene has two promoters: P-1, active in epithelial cells, and P-2, active in hemopoietic cells. In addition the expression of SHP-1 is low in epithelial cells and high in hemopoietic cells. SHP-1 level in epithelial cells increases and in hematopoietic cells decreases in cancer. [7]

Interactions

PTPN6 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">PTPN11</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.

<span class="mw-page-title-main">CD22</span> Lectin molecule

CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. Generally speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the development of autoimmune diseases.

An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acid serine, I is the amino acid isoleucine, and V is the amino acid valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.

<span class="mw-page-title-main">ITK (gene)</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase ITK/TSK also known as interleukin-2-inducible T-cell kinase or simply ITK, is a protein that in humans is encoded by the ITK gene. ITK is a member of the TEC family of kinases and is highly expressed in T cells.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">LYN</span> Mammalian protein found in Homo sapiens

Tyrosine-protein kinase Lyn is a protein that in humans is encoded by the LYN gene.

<span class="mw-page-title-main">CBL (gene)</span> Mammalian gene

Cbl is a mammalian gene encoding the protein CBL which is an E3 ubiquitin-protein ligase involved in cell signalling and protein ubiquitination. Mutations to this gene have been implicated in a number of human cancers, particularly acute myeloid leukaemia.

<span class="mw-page-title-main">RAS p21 protein activator 1</span> Protein-coding gene in the species Homo sapiens

RAS p21 protein activator 1 or RasGAP, also known as RASA1, is a 120-kDa cytosolic human protein that provides two principal activities:

<span class="mw-page-title-main">INPP5D</span> Protein-coding gene in the species Homo sapiens

Src homology 2 (SH2) domain containing inositol polyphosphate 5-phosphatase 1(SHIP1) is an enzyme with phosphatase activity. SHIP1 is structured by multiple domain and is encoded by the INPP5D gene in humans. SHIP1 is expressed predominantly by hematopoietic cells but also, for example, by osteoblasts and endothelial cells. This phosphatase is important for the regulation of cellular activation. Not only catalytic but also adaptor activities of this protein are involved in this process. Its movement from the cytosol to the cytoplasmic membrane, where predominantly performs its function, is mediated by tyrosine phosphorylation of the intracellular chains of cell surface receptors that SHIP1 binds. Insufficient regulation of SHIP1 leads to different pathologies.

<span class="mw-page-title-main">PTPRA</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase alpha is an enzyme that in humans is encoded by the PTPRA gene.

<span class="mw-page-title-main">Signal-regulatory protein alpha</span> Protein-coding gene in the species Homo sapiens

Signal regulatory protein α (SIRPα) is a regulatory membrane glycoprotein from SIRP family expressed mainly by myeloid cells and also by stem cells or neurons.

<span class="mw-page-title-main">PTPRE</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase epsilon is an enzyme that in humans is encoded by the PTPRE gene.

<span class="mw-page-title-main">PTPRJ</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase eta is an enzyme that in humans is encoded by the PTPRJ gene.

<span class="mw-page-title-main">LAIR1</span> Protein-coding gene in the species Homo sapiens

Leukocyte-associated immunoglobulin-like receptor 1 is a protein that in humans is encoded by the LAIR1 gene. LAIR1 has also been designated as CD305.

<span class="mw-page-title-main">PTPN7</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase non-receptor type 7 is an enzyme that in humans is encoded by the PTPN7 gene.

<span class="mw-page-title-main">SIGLEC7</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 7 is a protein that in humans is encoded by the SIGLEC7 gene. SIGLEC7 has also been designated as CD328.

<span class="mw-page-title-main">PTPRR</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase receptor-type R is an enzyme that in humans is encoded by the PTPRR gene.

<span class="mw-page-title-main">PTPN18</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 18 is an enzyme that in humans is encoded by the PTPN18 gene.

<span class="mw-page-title-main">PTPN9</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 9 is an enzyme that in humans is encoded by the PTPN9 gene.

<span class="mw-page-title-main">PTPN21</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 21 is an enzyme that in humans is encoded by the PTPN21 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000111679 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000004266 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Plutzky J, Neel BG, Rosenberg RD, Eddy RL, Byers MG, Jani-Sait S, Shows TB (August 1992). "Chromosomal localization of an SH2-containing tyrosine phosphatase (PTPN6)". Genomics. 13 (3): 869–72. doi:10.1016/0888-7543(92)90172-O. PMID   1639416.
  6. "Entrez Gene: PTPN6 protein tyrosine phosphatase, non-receptor type 6".
  7. Amin S, Kumar A, Nilchi L, Wright K, Kozlowski M (August 2011). "Breast cancer cells proliferation is regulated by tyrosine phosphatase SHP1 through c-jun N-terminal kinase and cooperative induction of RFX-1 and AP-4 transcription factors". Mol. Cancer Res. 9 (8): 1112–25. doi:10.1158/1541-7786.MCR-11-0097. PMID   21719561. S2CID   33833067.
  8. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D (October 1998). "Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase". Oncogene. 17 (15): 1889–92. doi:10.1038/sj.onc.1202117. PMID   9788431. S2CID   42228230.
  9. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (April 1998). "SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain". Mol. Cell. Biol. 18 (4): 2089–99. doi:10.1128/mcb.18.4.2089. PMC   121439 . PMID   9528781.
  10. Yi T, Ihle JN (June 1993). "Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand". Mol. Cell. Biol. 13 (6): 3350–8. doi:10.1128/mcb.13.6.3350. PMC   359793 . PMID   7684496.
  11. Blasioli J, Paust S, Thomas ML (January 1999). "Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22". J. Biol. Chem. 274 (4): 2303–7. doi: 10.1074/jbc.274.4.2303 . PMID   9890995.
  12. Otipoby KL, Draves KE, Clark EA (November 2001). "CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1". J. Biol. Chem. 276 (47): 44315–22. doi:10.1074/jbc.M105446200. PMID   11551923.
  13. Greer SF, Justement LB (May 1999). "CD45 regulates tyrosine phosphorylation of CD22 and its association with the protein tyrosine phosphatase SHP-1". J. Immunol. 162 (9): 5278–86. doi: 10.4049/jimmunol.162.9.5278 . PMID   10228003.
  14. Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH, Clark EA (February 1996). "CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation". J. Exp. Med. 183 (2): 547–60. doi:10.1084/jem.183.2.547. PMC   2192439 . PMID   8627166.
  15. Adachi T, Wienands J, Wakabayashi C, Yakura H, Reth M, Tsubata T (July 2001). "SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates". J. Biol. Chem. 276 (28): 26648–55. doi: 10.1074/jbc.M100997200 . PMID   11356834.
  16. Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, Lord JM, Wakelam MJ, Bird IN, Salmon M, Buckley CD (April 1999). "Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31". FEBS Lett. 450 (1–2): 77–83. doi: 10.1016/s0014-5793(99)00446-9 . PMID   10350061. S2CID   31471121.
  17. Hua CT, Gamble JR, Vadas MA, Jackson DE (October 1998). "Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates". J. Biol. Chem. 273 (43): 28332–40. doi: 10.1074/jbc.273.43.28332 . PMID   9774457.
  18. Keilhack H, Hellman U, van Hengel J, van Roy F, Godovac-Zimmermann J, Böhmer FD (August 2000). "The protein-tyrosine phosphatase SHP-1 binds to and dephosphorylates p120 catenin". J. Biol. Chem. 275 (34): 26376–84. doi: 10.1074/jbc.M001315200 . PMID   10835420.
  19. Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (September 1995). "Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C". J. Biol. Chem. 270 (36): 21277–84. doi: 10.1074/jbc.270.36.21277 . PMID   7673163.
  20. Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD (September 1998). "Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling". J. Biol. Chem. 273 (38): 24839–46. doi: 10.1074/jbc.273.38.24839 . PMID   9733788.
  21. Klingmüller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (March 1995). "Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals". Cell. 80 (5): 729–38. doi: 10.1016/0092-8674(95)90351-8 . PMID   7889566. S2CID   16866005.
  22. Xu MJ, Zhao R, Cao H, Zhao ZJ (May 2002). "SPAP2, an Ig family receptor containing both ITIMs and ITAMs". Biochem. Biophys. Res. Commun. 293 (3): 1037–46. doi:10.1016/S0006-291X(02)00332-7. PMID   12051764.
  23. 1 2 3 Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE (June 2000). "Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk". J. Biol. Chem. 275 (23): 17263–8. doi: 10.1074/jbc.M000689200 . PMID   10747947.
  24. Kon-Kozlowski M, Pani G, Pawson T, Siminovitch KA (February 1996). "The tyrosine phosphatase PTP1C associates with Vav, Grb2, and mSos1 in hematopoietic cells". J. Biol. Chem. 271 (7): 3856–62. doi: 10.1074/jbc.271.7.3856 . PMID   8632004.
  25. Saci A, Liu WQ, Vidal M, Garbay C, Rendu F, Bachelot-Loza C (May 2002). "Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement". Biochem. J. 363 (Pt 3): 717–25. doi:10.1042/0264-6021:3630717. PMC   1222524 . PMID   11964172.
  26. Eklund EA, Goldenberg I, Lu Y, Andrejic J, Kakar R (September 2002). "SHP1 protein-tyrosine phosphatase regulates HoxA10 DNA binding and transcriptional repression activity in undifferentiated myeloid cells". J. Biol. Chem. 277 (39): 36878–88. doi: 10.1074/jbc.M203917200 . PMID   12145285.
  27. Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T (December 1996). "Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1". Mol. Cell. Biol. 16 (12): 6985–92. doi:10.1128/mcb.16.12.6985. PMC   231702 . PMID   8943354.
  28. Wu DW, Stark KC, Dunnington D, Dillon SB, Yi T, Jones C, Pelus LM (February 2000). "SH2-Containing protein tyrosine phosphatase-1 (SHP-1) association with Jak2 in UT-7/Epo cells". Blood Cells Mol. Dis. 26 (1): 15–24. doi:10.1006/bcmd.2000.0273. PMID   10772872.
  29. 1 2 Mousseau DD, Banville D, L'Abbé D, Bouchard P, Shen SH (February 2000). "PILRalpha, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRbeta". J. Biol. Chem. 275 (6): 4467–74. doi: 10.1074/jbc.275.6.4467 . PMID   10660620.
  30. Sathish JG, Johnson KG, Fuller KJ, LeRoy FG, Meyaard L, Sims MJ, Matthews RJ (February 2001). "Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells". J. Immunol. 166 (3): 1763–70. doi: 10.4049/jimmunol.166.3.1763 . PMID   11160222.
  31. Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, Patel S, Zlot C, Gorman D, Zurawski S, Abrams J, Bates EE, Garrone P (August 2000). "FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells". J. Immunol. 165 (3): 1197–209. doi: 10.4049/jimmunol.165.3.1197 . PMID   10903717.
  32. Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (August 1997). "LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes". Immunity. 7 (2): 283–90. doi: 10.1016/s1074-7613(00)80530-0 . hdl: 2066/26173 . PMID   9285412.
  33. Xu Mj, Zhao R, Zhao ZJ (June 2000). "Identification and characterization of leukocyte-associated Ig-like receptor-1 as a major anchor protein of tyrosine phosphatase SHP-1 in hematopoietic cells". J. Biol. Chem. 275 (23): 17440–6. doi: 10.1074/jbc.M001313200 . PMID   10764762.
  34. Fanger NA, Cosman D, Peterson L, Braddy SC, Maliszewski CR, Borges L (November 1998). "The MHC class I binding proteins LIR-1 and LIR-2 inhibit Fc receptor-mediated signaling in monocytes". Eur. J. Immunol. 28 (11): 3423–34. doi: 10.1002/(SICI)1521-4141(199811)28:11<3423::AID-IMMU3423>3.0.CO;2-2 . PMID   9842885.
  35. Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O'Callaghan CA, Dunbar R, Ogg GS, Cerundolo V, Rolink A (April 1998). "Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules". J. Immunol. 160 (7): 3096–100. doi: 10.4049/jimmunol.160.7.3096 . PMID   9531263.
  36. Wang LL, Blasioli J, Plas DR, Thomas ML, Yokoyama WM (February 1999). "Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B". J. Immunol. 162 (3): 1318–23. doi: 10.4049/jimmunol.162.3.1318 . PMID   9973385.
  37. Yu CL, Jin YJ, Burakoff SJ (January 2000). "Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation". J. Biol. Chem. 275 (1): 599–604. doi: 10.1074/jbc.275.1.599 . PMID   10617656.
  38. Chiang GG, Sefton BM (June 2001). "Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase". J. Biol. Chem. 276 (25): 23173–8. doi: 10.1074/jbc.M101219200 . PMID   11294838.
  39. Lorenz U, Ravichandran KS, Pei D, Walsh CT, Burakoff SJ, Neel BG (March 1994). "Lck-dependent tyrosyl phosphorylation of the phosphotyrosine phosphatase SH-PTP1 in murine T cells". Mol. Cell. Biol. 14 (3): 1824–34. doi:10.1128/mcb.14.3.1824. PMC   358540 . PMID   8114715.
  40. Binstadt BA, Billadeau DD, Jevremović D, Williams BL, Fang N, Yi T, Koretzky GA, Abraham RT, Leibson PJ (October 1998). "SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors". J. Biol. Chem. 273 (42): 27518–23. doi: 10.1074/jbc.273.42.27518 . PMID   9765283.
  41. Mizuno K, Katagiri T, Hasegawa K, Ogimoto M, Yakura H (August 1996). "Hematopoietic cell phosphatase, SHP-1, is constitutively associated with the SH2 domain-containing leukocyte protein, SLP-76, in B cells". J. Exp. Med. 184 (2): 457–63. doi:10.1084/jem.184.2.457. PMC   2192711 . PMID   8760799.
  42. Yoshida K, Kufe D (December 2001). "Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase C delta in response to DNA damage". Mol. Pharmacol. 60 (6): 1431–8. doi:10.1124/mol.60.6.1431. PMID   11723252.
  43. Kumar S, Avraham S, Bharti A, Goyal J, Pandey P, Kharbanda S (October 1999). "Negative regulation of PYK2/related adhesion focal tyrosine kinase signal transduction by hematopoietic tyrosine phosphatase SHPTP1". J. Biol. Chem. 274 (43): 30657–63. doi: 10.1074/jbc.274.43.30657 . PMID   10521452.
  44. Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (January 2001). "Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1". J. Cell Biol. 152 (2): 325–34. doi:10.1083/jcb.152.2.325. PMC   2199605 . PMID   11266449.
  45. Yang J, Cheng Z, Niu T, Liang X, Zhao ZJ, Zhou GW (February 2000). "Structural basis for substrate specificity of protein-tyrosine phosphatase SHP-1". J. Biol. Chem. 275 (6): 4066–71. doi: 10.1074/jbc.275.6.4066 . PMID   10660565.
  46. Dustin LB, Plas DR, Wong J, Hu YT, Soto C, Chan AC, Thomas ML (March 1999). "Expression of dominant-negative src-homology domain 2-containing protein tyrosine phosphatase-1 results in increased Syk tyrosine kinase activity and B cell activation". J. Immunol. 162 (5): 2717–24. doi: 10.4049/jimmunol.162.5.2717 . PMID   10072516.
  47. Yetter A, Uddin S, Krolewski JJ, Jiao H, Yi T, Platanias LC (August 1995). "Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase". J. Biol. Chem. 270 (31): 18179–82. doi: 10.1074/jbc.270.31.18179 . PMID   7629131.