Radium azide

Last updated
Radium azide
Radium azide.png
Names
Preferred IUPAC name
Radium azide
Identifiers
3D model (JSmol)
  • InChI=1S/Ra.2N3/c;2*1-3-2/q+2;2*-1
    Key: HIUMKPQDFAKAIP-UHFFFAOYSA-N
  • [Ra+2].[N-]=[N+]=[N-].[N-]=[N+]=[N-]
Properties
N6Ra
Molar mass 310 g·mol−1
Appearancewhite crystalline solid
Related compounds
Related compounds
Barium azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Radium azide is an inorganic compound of radium and nitrogen with the chemical formula Ra(N3)2. [1]

Contents

Synthesis

Radium azide can be prepared by dissolving radium carbonate in aqueous hydrazoic acid and evaporating the resulting solution. [2] [3]

Physical properties

Radium azide forms white crystalline solid. [2]

Chemical properties

The compound decomposes when heated to 180–250 °C: [4] [5]

Ra(N3)2 → Ra + 3N2

Related Research Articles

<span class="mw-page-title-main">Radium</span> Chemical element, symbol Ra and atomic number 88

Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits ionizing radiation as a by-product, which can excite fluorescent chemicals and cause radioluminescence.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely poisonous.

Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X, such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

<span class="mw-page-title-main">Hydrazoic acid</span> Unstable and toxic chemical compound

Hydrazoic acid, also known as hydrogen azide, azic acid or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. The oxidation state of the nitrogen atoms in hydrazoic acid is fractional and is -1/3. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Potassium azide</span> Chemical compound

Potassium azide is the inorganic compound having the formula KN3. It is a white, water-soluble salt. It is used as a reagent in the laboratory.

<span class="mw-page-title-main">Beryllium azide</span> Chemical compound

Beryllium azide, Be(N3)2, is an inorganic compound. It is the beryllium analog of hydrazoic acid.

<span class="mw-page-title-main">Bromine azide</span> Chemical compound

Bromine azide is an explosive inorganic compound with the formula BrN3. It has been described as a crystal or a red liquid at room temperature. It is extremely sensitive to small variations in temperature and pressure, with explosions occurring at Δp ≥ 0.05 Torr and also upon crystallization, thus extreme caution must be observed when working with this chemical.

<span class="mw-page-title-main">Fluorine azide</span> Chemical compound

Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula FN3. Its properties resemble those of ClN3, BrN3, and IN3. The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion. Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms.

<span class="mw-page-title-main">Rubidium azide</span> Chemical compound

Rubidium azide is an inorganic compound with the formula RbN3. It is the rubidium salt of the hydrazoic acid HN3. Like most azides, it is explosive.

<span class="mw-page-title-main">Zinc azide</span> Chemical compound

Zinc azideZn(N3)2 is an inorganic compound composed of zinc cations (Zn2+) and azide anions (N−3). It is a white, explosive solid that can be prepared by the protonolysis of diethylzinc with hydrazoic acid:

<span class="mw-page-title-main">Iodine azide</span> Chemical compound

Iodine azide is an explosive inorganic compound, which in ordinary conditions is a yellow solid. Formally, it is an inter-pseudohalogen.

<span class="mw-page-title-main">Caesium azide</span> Chemical compound

Caesium azide or cesium azide is an inorganic compound of caesium and nitrogen. It is a salt of azide with the formula CsN3.

<span class="mw-page-title-main">Boron triazide</span> Chemical compound

Boron triazide, also known as triazidoborane, is a thermally unstable compound of boron and nitrogen with a nitrogen content of 92.1 %. Formally, it is the triazido derivative of borane and is a covalent inorganic azide. The high-energy compound, which has the propensity to undergo spontaneous explosive decomposition, was first described in 1954 by Egon Wiberg and Horst Michaud of the University of Munich.

<span class="mw-page-title-main">Transition metal azide complex</span>

Transition metal azide complexes are coordination complexes containing one or more azide (N3) ligands.

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer for azide groups, or interest in high energy density materials.

Radium oxide is an inorganic compound of radium and oxygen with the chemical formula RaO.

Radium iodate is an inorganic compound, a salt of radium and iodic acid with the chemical formula Ra(IO3)2.

Nickel azide is an inorganic chemical compound with the formula Ni(N3)2. It can be formed through the reaction between nickel tetracarbonyl and iodine azide.

References

  1. Kubach, Isa (1977). Radium: Supplement volume. Springer-Verlag. p. 360. ISBN   978-0-387-93335-1 . Retrieved 15 June 2023.
  2. 1 2 Bagnall, K. W. (1957). Chemistry of the Rare Radioelements: Polonium-actinium. Butterworths Scientific Publications. p. 143. Retrieved 15 June 2023.
  3. Vdovenko, Viktor Mikhaĭlovich (1973). Аналитическая химия радия (in Russian). "Наука, "Ленингр. отд-ние. p. 36. Retrieved 15 June 2023.
  4. Mellor, Joseph William (1923). A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Longmans, Green and Company. p. 64. Retrieved 15 June 2023.
  5. Britain, Royal Institution of Great (1914). Proceedings. Royal Institution of Great Britain. p. 155. Retrieved 15 June 2023.