Ammonium azide

Last updated
Ammonium azide
Ammonium azide.png
Ammonium-azide-3D-balls.png
Ammonium-azide-unit-cell-3D-bs-17.png
Names
IUPAC name
Ammonium azide
Other names
Ammonium trinitride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.093 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-315-4
PubChem CID
  • InChI=1S/HN3.H3N/c1-3-2;/h1H;1H3
    Key: MXZUDRZKSUUQRR-UHFFFAOYSA-N
  • N.N=[N+]=[N-]
Properties
[NH4]N3
Molar mass 60.060 g·mol−1
AppearanceColorless or white crystalline solid
Odor Odorless
Density 1.3459 g/cm3
Melting point 160 °C (320 °F; 433 K)
Boiling point 400 °C (752 °F; 673 K) (decomposes)
Structure [1]
Orthorhombic
Pman
a = 8.930, b = 8.642, c = 3.800
4
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Very toxic, explosive
Related compounds
Other anions
Ammonium nitrate
Ammonium cyanide
Ammonium carbamate
Other cations
Lithium azide
Sodium azide
Potassium azide
Rubidium azide
Caesium azide
Silver azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium azide is the chemical compound with the formula [NH4]N3, being the salt of ammonia and hydrazoic acid. Like other inorganic azides, this colourless crystalline salt is a powerful explosive, although it has a remarkably low sensitivity. [NH4]N3 is physiologically active and inhalation of small amounts causes headaches and palpitations. It was first obtained by Theodor Curtius in 1890, along with other azides.

Structure

Ammonium azide is ionic, meaning it is a salt consisting of ammonium cations [NH4]+ and azide anions N3, therefore its formula is [NH4]+[N3]. It is a structural isomer of tetrazene. Ammonium azide contains about 93% nitrogen by mass.

Related Research Articles

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is acutely poisonous.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Hydrazoic acid</span> Unstable and toxic chemical compound

Hydrazoic acid, also known as hydrogen azide, azic acid or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. The oxidation state of the nitrogen atoms in hydrazoic acid is fractional and is -1/3. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

<span class="mw-page-title-main">Ammonium persulfate</span> Chemical compound

Ammonium persulfate (APS) is the inorganic compound with the formula (NH4)2S2O8. It is a colourless (white) salt that is highly soluble in water, much more so than the related potassium salt. It is a strong oxidizing agent that is used as a catalyst in polymer chemistry, as an etchant, and as a cleaning and bleaching agent.

<span class="mw-page-title-main">Ammonium hydrosulfide</span> Chemical compound

Ammonium hydrosulfide is the chemical compound with the formula [NH4]SH.

Pentazole is an aromatic molecule consisting of a five-membered ring with all nitrogen atoms, one of which is bonded to a hydrogen atom. It has the molecular formula HN5. Although strictly speaking a homocyclic, inorganic compound, pentazole has historically been classed as the last in a series of heterocyclic azole compounds containing one to five nitrogen atoms. This set contains pyrrole, imidazole, pyrazole, triazoles, tetrazole, and pentazole.

<span class="mw-page-title-main">Reinecke's salt</span> Chemical compound

Reinecke's salt is an inorganic compound with the formula NH4[Cr(NCS)4(NH3)2H2O. The dark-red crystalline compound is soluble in boiling water, acetone, and ethanol. It can be classified as a metal isothiocyanate complex.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Vanadium(III) fluoride</span> Chemical compound

Vanadium(III) fluoride is the chemical compound with the formula VF3. This yellow-green, refractory solid is obtained in a two-step procedure from V2O3. Similar to other transition-metal fluorides (such as MnF2), it exhibits magnetic ordering at low temperatures (e.g. V2F6.4H2O orders below 12 K).

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Ammonium paratungstate</span> Chemical compound

Ammonium paratungstate (or APT) is a white crystalline salt with the chemical formula (NH4)10(H2W12O42)·4H2O. It is described as "the most important raw material for all other tungsten products."

Tutton's salts are a family of salts with the formula M2M'(SO4)2(H2O)6 (sulfates) or M2M'(SeO4)2(H2O)6 (selenates). These materials are double salts, which means that they contain two different cations, M+ and M'2+ crystallized in the same regular ionic lattice. The univalent cation can be potassium, rubidium, caesium, ammonium (NH4), deuterated ammonium (ND4) or thallium. Sodium or lithium ions are too small. The divalent cation can be magnesium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc or cadmium. In addition to sulfate and selenate, the divalent anion can be chromate (CrO42−), tetrafluoroberyllate (BeF42−), hydrogenphosphate (HPO42−) or monofluorophosphate (PO3F2−). Tutton's salts crystallize in the monoclinic space group P21/a. The robustness is the result of the complementary hydrogen-bonding between the tetrahedral anions and cations as well their interactions with the metal aquo complex [M(H2O)6]2+.

<span class="mw-page-title-main">Potassium azide</span> Chemical compound

Potassium azide is the inorganic compound having the formula KN3. It is a white, water-soluble salt. It is used as a reagent in the laboratory.

<span class="mw-page-title-main">Barium azide</span> Chemical compound

Barium azide is an inorganic azide with the formula Ba(N3)2. It is a barium salt of hydrazoic acid. Like most azides, it is explosive. It is less sensitive to mechanical shock than lead azide.

<span class="mw-page-title-main">Ammonium oxalate</span> Chemical compound

Ammonium oxalate is a chemical compound with the chemical formula [NH4]2C2O4. Its formula is often written as (NH4)2C2O4 or (COONH4)2. It is an ammonium salt of oxalic acid. It consists of ammonium cations ([NH4]+) and oxalate anions (C2O2−4). The structure of ammonium oxalate is ([NH4]+)2[C2O4]2−. Ammonium oxalate sometimes comes as a monohydrate ([NH4]2C2O4·H2O). It is a colorless or white salt under standard conditions and is odorless and non-volatile. It occurs in many plants and vegetables.

<span class="mw-page-title-main">Hydrazinium</span> Cation

Hydrazinium is the cation with the formula [N2H5]+. This cation has a methylamine-like structure. It can be derived from hydrazine by protonation. Hydrazinium is a weak acid with pKa = 8.1.

<span class="mw-page-title-main">Rubidium azide</span> Chemical compound

Rubidium azide is an inorganic compound with the formula RbN3. It is the rubidium salt of the hydrazoic acid HN3. Like most azides, it is explosive.

<span class="mw-page-title-main">Caesium azide</span> Chemical compound

Caesium azide or cesium azide is an inorganic compound of caesium and nitrogen. It is a salt of azide with the formula CsN3.

<span class="mw-page-title-main">Sulfuryl diazide</span> Chemical compound

Sulfuryl diazide or sulfuryl azide is a chemical compound with the molecular formula SO2(N3)2. It was first described in the 1920s when its reactions with benzene and p-xylene were studied by Theodor Curtius and Karl Friedrich Schmidt. The compound is reported as having "exceedingly explosive, unpredictable properties" and "in many cases very violent explosions occurred without any apparent reason".

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer of azide groups, or for research into high-energy-density matter.

References

  1. Frevel, Ludo K. (1 January 1936). "The Crystal Structure of Ammonium Azide, NH4N3". Zeitschrift für Kristallographie - Crystalline Materials. 94 (1–6): 197. doi:10.1524/zkri.1936.94.1.197. S2CID   100695095.