Chromium azide

Last updated
Chromium azide
Names
IUPAC name
Chromium(III) triazide
Other names
  • Chromium(III) azide
  • Chromium triazide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/Cr.3N3/c;3*1-3-2/q+3;3*-1
    Key: QTGXYCYBAVYYCM-UHFFFAOYSA-N
  • [N-]=[N+]=[N-].[N-]=[N+]=[N-].[N-]=[N+]=[N-].[Cr+3]
Properties
Cr(N3)3
Molar mass 178.06 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chromium azide is an inorganic chemical compound with the formula Cr(N3)3.

Properties

Chromium azide formation has been investigated from chromium salts and sodium azide. It was separated in 1922 through the evaporation of a dry crystalline chromium(III) nitrate solution in absolute alcohol with sodium azide. [1] Through a spectrophotometric study, it was shown that the chromium(III) nitrate solution's green color was due to the mono-azido-chromium(III) complex. Two absorbency maxima were located at 445 and 605 nm. [1] Chromium azide has luminescence properties from its optically active Cr3+ ions. [2]

Related Research Articles

<span class="mw-page-title-main">Chromium</span> Chemical element, symbol Cr and atomic number 24

Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Nitrate</span> Polyatomic ion (NO₃, charge –1) found in explosives and fertilisers

Nitrate is a polyatomic ion with the chemical formula NO
3
. Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insoluble nitrate is bismuth oxynitrate.

<span class="mw-page-title-main">Sodium nitrite</span> Chemical compound

Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite salt. It is a precursor to a variety of organic compounds, such as pharmaceuticals, dyes, and pesticides, but it is probably best known as a food additive used in processed meats and (in some countries) in fish products.

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely poisonous.

<span class="mw-page-title-main">Thermal decomposition</span> Chemical decomposition caused by heat

Thermal decomposition is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction.

<span class="mw-page-title-main">Chromate conversion coating</span> Chemical treatment of metals

Chromate conversion coating or alodine coating is a type of conversion coating used to passivate steel, aluminium, zinc, cadmium, copper, silver, titanium, magnesium, and tin alloys. The coating serves as a corrosion inhibitor, as a primer to improve the adherence of paints and adhesives, as a decorative finish, or to preserve electrical conductivity. It also provides some resistance to abrasion and light chemical attack on soft metals.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Chromium compounds</span> Chemical compounds containing chromium

Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.

<span class="mw-page-title-main">Green rust</span> Generic name for various green-colored iron compounds

Green rust is a generic name for various green crystalline chemical compounds containing iron(II) and iron(III) cations, the hydroxide (HO
) anion, and another anion such as carbonate (CO2−
3
), chloride (Cl
), or sulfate (SO2−
4
), in a layered double hydroxide structure. The most studied varieties are

<span class="mw-page-title-main">Chromium(III) phosphate</span> Chemical compound

Chromium(III) phosphate describes inorganic compounds with the chemical formula CrPO4·(H2O)n, where n = 0, 4, or 6. All are deeply colored solids. Anhydrous CrPO4 is green. The hexahydrate CrPO4·6H2O is violet.

<span class="mw-page-title-main">Cerium nitrates</span> Chemical compound

Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.

<span class="mw-page-title-main">Fluorine azide</span> Chemical compound

Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula FN3. Its properties resemble those of ClN3, BrN3, and IN3. The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion. Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms.

<span class="mw-page-title-main">Terbium(III) nitrate</span> Chemical compound

Terbium(III) nitrate is an inorganic chemical compound, a salt of terbium and nitric acid, with the formula Tb(NO3)3. The hexahydrate crystallizes as triclinic colorless crystals with the formula [Tb(NO3)3(H2O)4]·2H2O. It can be used to synthesize materials with green emission.

Indium(III) nitrate is a nitrate salt of indium which forms various hydrates. Only the pentahydrate has been crystallographically verified. Other hydrates are also reported in literature, such as the trihydrate.

Europium(III) chromate is a chemical compound composed of europium, chromium and oxygen with europium in the +3 oxidation state, chromium in the +5 oxidation state and oxygen in the -2 oxidation state. It has the chemical formula of EuCrO4.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

Cobalt compounds are chemical compounds formed by cobalt with other elements.

References

  1. 1 2 Sherif, F. G.; Oraby, W. M. (4 August 1960). "The structure of chromium azide: Its instability constant in aqueous solutions". J. Inorg. Nucl. Chem. 17 (1–2): 152–158. doi:10.1016/0022-1902(61)80201-7 . Retrieved 30 October 2023.
  2. Trzebiatowska, M.; Hermanowicz, K. (3 December 2020). "The mechanism of phase transitions and luminescence properties of azide perovskites". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 255. doi:10.1016/j.saa.2021.119716. PMID   33784594. S2CID   232430395 . Retrieved 30 October 2023.