Ring spinning

Last updated
A ring spinning machine in the 1920s Ring spinning machine in the 1920s.jpg
A ring spinning machine in the 1920s

Ring spinning is a spindle-based method of spinning fibres, such as cotton, flax or wool, to make a yarn. The ring frame developed from the throstle frame, which in its turn was a descendant of Arkwright's water frame. Ring spinning is a continuous process, unlike mule spinning which uses an intermittent action. In ring spinning, the roving is first attenuated by using drawing rollers, then spun and wound around a rotating spindle which in its turn is contained within an independently rotating ring flyer. Traditionally ring frames could only be used for the coarser counts, but they could be attended by semi-skilled labour. [1]

Contents

History

Early machines

Arkwright's spinning frame Arkwright Spinning frame Marsden 212.png
Arkwright's spinning frame

Developments in the United States

Machine shops experimented with ring frames and components in the 1830s. The success of the ring frame, however, was dependent on the market it served and it was not until industry leaders like Whitin Machine Works in the 1840s and the Lowell Machine Shop in the 1850s began to manufacture ring frames that the technology started to take hold. [4]

At the time of the American Civil War, the American industry boasted 1,091 mills with 5,200,000 spindles processing 800,000 bales of cotton. The largest mill, Naumkeag Steam Cotton Co. in Salem, Mass.had 65,584 spindles. The average mill housed only 5,000 to 12,000 spindles, with mule spindles out-numbering ring spindles two-to-one. [5]

After the war, mill building started in the south, it was seen as a way of providing employment. Almost exclusively these mills used ring technology to produce coarse counts, and the New England mills moved into fine counts.

Jacob Sawyer vastly improved spindle for the ring frame in 1871, taking the speed from 5000rpm to 7500rpm and reducing the power needed, formerly 100 spindles would need 1 hp but now 125 could be driven. This also led to production of fine yarns. [6] During the next ten years, the Draper Corporation protected its patent through the courts. One infringee was Jenks, who was marketing a spindle known after its designer, Rabbeth. When they lost the case, Mssrs. Fales and Jenks, revealed a new patent free spindle also designed by Rabbeth, and also named the Rabbeth spindle.

The Rabbeth spindle was self-lubricating and capable of running without vibration at over 7500 rpm. The Draper Co. bought the patent and expanded the Sawyer Spindle Co. to manufacture it. They licensed it to Fales & Jenks Machine Co., the Hopedale Machine Co., and later, other machine builders. From 1883 to 1890 this was the standard spindle, and William Draper spent much of his time in court defending this patent. [6]

Adoption in Europe

The new method was compared with the self-acting spinning mule which was developed by Richard Roberts using the more advanced engineering techniques in Manchester. The ring frame was reliable for coarser counts while Lancashire spun fine counts as well. The ring frame was heavier, requiring structural alteration in the mills and needed more power. These were not problems in the antebellum cotton industry in New England. It fulfilled New England's difficulty in finding skilled spinners: skilled spinners were plentiful in Lancashire. In the main the requirements on the two continents were different, and the ring frame was not the method of choice for Europe at that moment.

Brooks and Doxey Ring Spinning Frame about 1890 Brooks and Doxey Ring Spinning Frame TM.png
Brooks and Doxey Ring Spinning Frame about 1890

Mr Samuel Brooks of Brooks & Doxey Manchester was convinced of the viability of the method. After a fact-finding tour to the States by his agent Blakey, he started to work on improving the frame. It was still too primitive to compete with the highly developed mule frames, let alone supersede them. He first started on improving the doubling frame, constructing the necessary tooling needed to improve the precision of manufacture. This was profitable and machines offering 180,000 spindle were purchased by a sewing thread manufacturer. [7]

Brooks and other manufacturers now worked on improving the spinning frame. The principal cause for concern was the design of the Booth-Sawyer spindle. The bobbin did not fit tightly on the spindle and vibrated wildly at higher speeds. Howard & Bullough of Accrington used the Rabbath spindle, which solved these problems. Another problem was ballooning, where the thread built up in an uneven manner. This was addressed by Furniss and Young of Mellor Bottom Mill, Mellor by attaching an open ring to the traverse or ring rail. This device controlled the thread, and consequently a lighter traveller could be made which could operate at higher speeds. Another problem was the accumulation of fluff on the traveller breaking the thread - this was eliminated by a device called a traveller cleaner. [8]

A major time constraint was doffing, or changing the spindles. Three hundred or more spindles had to be removed, and replaced. The machine had to be stopped while the doffers, who were often very young boys, did this task. The ring frame was idle until it was completed. [9] Harold Partington (1906 - 1994) of Chadderton, England, patented a 'Means for Doffing Ring Frames' in September 1953 (US Patent 2,653,440). The machine removed full bobbins from the ring frame spindles, and placed empty bobbins onto the spindles in their place; eight spindles at a time. It was traversable along the front of the ring frame step by step through successive operations, and thereby reduced the period of stoppage of the ring frame as well as reducing the labour required for removing all the filled bobbins on a frame and replacing them with empty bobbins. The Partington autodoffer was developed with assistance from Platt Brothers (Oldham) and worked perfectly in ideal conditions: flat horizontal floor and ring frame parallel to the floor and standing vertically. Sadly, these conditions were unobtainable in most Lancashire cotton mills at the time and so the autodoffer did not go into production. The Partington autodoffer was unique and the only one to work properly as an add-on to a ring frame. A more modern mechanical doffer system fitted as an integral part of the ring frame, reduced the doffing time to 30–35 seconds. [ citation needed ]

Rings and mules

The ring frame was extensively used in the United States, where coarser counts were manufactured. Many of frame manufacturers were US affiliates of the Lancashire firms, such as Howard & Bullough and Tweedales and Smalley. They were constantly trying to improve the speed and quality of their product. The US market was relatively small, the total number of spindles in the entire United States was barely more than the number of spindles in one Lancashire town, Oldham. When production in Lancashire peaked in 1926 Oldham had 17.669 million spindles and the UK had 58.206 million. [10]

Technologically mules were more versatile. The mules were more easily changed to spin the larger variety of qualities of cotton then found in Lancashire. While Lancashire concentrated on "Fines" for export, it also spun a wider range, including the very coarse wastes. The existence of the Liverpool cotton exchange meant that mill owners had access to a wider selection of staples.

The wage cost per spindle is higher for ring spinning. In the states, where cotton staple was cheap, the additional labour costs of running mules could be absorbed, but Lancashire had to pay shipment costs. The critical factor was the availability of labour, when skilled labour was scarce then the ring became advantageous. [11] This had always been so in New England, and when it became so in Lancashire, ring frames started to be adopted.

The first known mill in Lancashire dedicated to ring spinning was built in Milnrow for the New Ladyhouse Cotton Spinning Company (registered 26 April 1877). A cluster of smaller mills developed which between 1884 and 1914 out performed the ring mills of Oldham. [12] After 1926, the Lancashire industry went into sharp decline, the Indian export market was lost, Japan was self-sufficient. Textile firms united to reduce capacity rather than to add to it. It wasn't until the late 1940s that some replacement spindles started to be ordered and ring frames became dominant. Debate still continues in academic papers on whether the Lancashire entrepreneurs made the right purchases decisions in the 1890s. [11] The engine house and steam engine of the Ellenroad Ring Mill are preserved.

New technologies

How it works

Modern ring spinning frame
1 Drafting rollers
2 Spindle
3 Attenuated roving
4 Thread guides
5 Anti-ballooning ring
6 Traveller
7 Rings
8 Thread on bobbin Ring 1.jpg
Modern ring spinning frame
1 Drafting rollers
2 Spindle
3 Attenuated roving
4 Thread guides
5 Anti-ballooning ring
6 Traveller
7 Rings
8 Thread on bobbin

A ring frame was constructed from cast iron, and later pressed steel. On each side of the frame are the spindles, above them are draughting (drafting) rollers and on top is a creel loaded with bobbins of roving. The roving (unspun thread) passes downwards from the bobbins to the draughting rollers. Here the back roller steadied the incoming thread, while the front rollers rotated faster, pulling the roving out and making the fibres more parallel. The rollers are individually adjustable, originally by mean of levers and weights. The attenuated roving now passes through a thread guide that is adjusted to be centred above the spindle. Thread guides are on a thread rail which allows them to be hinged out of the way for doffing or piecing a broken thread. The attenuated roving passes down to the spindle assembly, where it is threaded though a small D ring called the traveller. The traveller moves along the ring. It is this that gives the ring frame its name. From here the thread is attached to the existing thread on the spindle. [14]

The traveller and the spindle share the same axis but rotate at different speeds. The spindle is driven and the traveller drags behind thus distributing the rotation between winding up on the spindle and twist into the yarn. The bobbin is fixed on the spindle. In a ring frames, the different speed was achieved by drag caused by air resistance and friction (lubrication of the contact surface between the traveller and the ring was a necessity). Spindles could rotate at speeds up to 25,000 rpm,[ citation needed ] this spins the yarn. The up and down ring rail motion guides the thread onto the bobbin into the shape required: i.e. a cop. The lifting must be adjusted for different yarn counts.

Doffing is a separate process. An attendant (or robot in an automated system) winds down the ring rails to the bottom. The machine stops. The thread guides are hinged up. The completed bobbin coils (yarn packages) are removed from the spindles. The new bobbin tube is placed on the spindle trapping the thread between it and the cup in the wharf of the spindle, the thread guides are lowered and the machine restarted. Now all the processes are done automatically. The yarn is taken to a cone winder. Currently, machines are manufactured by Rieter (Switzerland), ToyoTa (Japan), Zinser, Suessen, (Germany) and Marzoli (Italy). Both Rieter and ToyoTa have machines with up to 1824 spindles. All require controlled atmospheric conditions.

See also

Related Research Articles

Spinning is a twisting technique to form yarn from fibers. The fiber intended is drawn out, twisted, and wound onto a bobbin. A few popular fibers that are spun into yarn other than cotton, which is the most popular, are viscose, and synthetic polyester. Originally done by hand using a spindle whorl, starting in the 500s AD the spinning wheel became the predominant spinning tool across Asia and Europe. The spinning jenny and spinning mule, invented in the late 1700s, made mechanical spinning far more efficient than spinning by hand, and especially made cotton manufacturing one of the most important industries of the Industrial Revolution.

<span class="mw-page-title-main">Carding</span> Process that disentangles, cleans and intermixes fibres

Carding is a mechanical process that disentangles, cleans and intermixes fibres to produce a continuous web or sliver suitable for subsequent processing. This is achieved by passing the fibres between differentially moving surfaces covered with "card clothing", a firm flexible material embedded with metal pins. It breaks up locks and unorganised clumps of fibre and then aligns the individual fibres to be parallel with each other. In preparing wool fibre for spinning, carding is the step that comes after teasing.

<span class="mw-page-title-main">Spinning jenny</span> Multi-spool spinning frame

The spinning jenny is a multi-spindle spinning frame, and was one of the key developments in the industrialization of textile manufacturing during the early Industrial Revolution. It was invented in 1764 or 1765 by James Hargreaves in Stanhill, Oswaldtwistle, Lancashire in England.

<span class="mw-page-title-main">Power loom</span> Mechanised loom powered by a line shaft

A power loom is a mechanized loom, and was one of the key developments in the industrialization of weaving during the early Industrial Revolution. The first power loom was designed in 1786 by Edmund Cartwright and first built that same year. It was refined over the next 47 years until a design by the Howard and Bullough company made the operation completely automatic. This device was designed in 1834 by James Bullough and William Kenworthy, and was named the Lancashire loom.

<span class="mw-page-title-main">Cotton mill</span> Building producing yarn or cloth from cotton

A cotton mill is a building that houses spinning or weaving machinery for the production of yarn or cloth from cotton, an important product during the Industrial Revolution in the development of the factory system.

<span class="mw-page-title-main">Textile manufacture during the British Industrial Revolution</span> Early textile production via automated means

Textile manufacture during the British Industrial Revolution was centred in south Lancashire and the towns on both sides of the Pennines in the United Kingdom. The main drivers of the Industrial Revolution were textile manufacturing, iron founding, steam power, oil drilling, the discovery of electricity and its many industrial applications, the telegraph and many others. Railroads, steam boats, the telegraph and other innovations massively increased worker productivity and raised standards of living by greatly reducing time spent during travel, transportation and communications..

<span class="mw-page-title-main">Spinning frame</span> Industrial Revolution invention for spinning thread in a mechanized way

The spinning frame is an Industrial Revolution invention for spinning thread or yarn from fibres such as wool or cotton in a mechanized way. It was developed in 18th-century Britain by Richard Arkwright and John Kay.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile Manufacturing or Textile Engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Spinning mule</span> Machine used to spin cotton and other fibres

The spinning mule is a machine used to spin cotton and other fibres. They were used extensively from the late 18th to the early 20th century in the mills of Lancashire and elsewhere. Mules were worked in pairs by a minder, with the help of two boys: the little piecer and the big or side piecer. The carriage carried up to 1,320 spindles and could be 150 feet (46 m) long, and would move forward and back a distance of 5 feet (1.5 m) four times a minute. It was invented between 1775 and 1779 by Samuel Crompton. The self-acting (automatic) mule was patented by Richard Roberts in 1825. At its peak there were 50,000,000 mule spindles in Lancashire alone. Modern versions are still in niche production and are used to spin woollen yarns from noble fibres such as cashmere, ultra-fine merino and alpaca for the knitware market.

<span class="mw-page-title-main">Cotton-spinning machinery</span> Machinery used to spin cotton

Cotton-spinning machinery is machines which process prepared cotton roving into workable yarn or thread. Such machinery can be dated back centuries. During the 18th and 19th centuries, as part of the Industrial Revolution cotton-spinning machinery was developed to bring mass production to the cotton industry. Cotton spinning machinery was installed in large factories, commonly known as cotton mills.

<span class="mw-page-title-main">Thomas Highs</span>

Thomas Highs (1718–1803), of Leigh, Lancashire, was a reed-maker and manufacturer of cotton carding and spinning engines in the 1780s, during the Industrial Revolution. He is known for claiming patents on a spinning jenny, a carding machine and the throstle.

<span class="mw-page-title-main">Platt Brothers</span>

Platt Brothers, also known as Platt Bros & Co Ltd, was a British company based at Werneth in Oldham, North West England. The company manufactured textile machinery and were iron founders and colliery proprietors. By the end of the 19th century, the company had become the largest textile machinery manufacturer in the world, employing more than 12,000 workers.

<span class="mw-page-title-main">Open-end spinning</span> Technique for spinning yarn

Open-end spinning is a technology for creating yarn without using a spindle. It was invented and developed in Czechoslovakia in Výzkumný ústav bavlnářský / Cotton Research Institute in Ústí nad Orlicí in 1963.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

<span class="mw-page-title-main">Roberts Loom</span>

The Roberts loom was a cast-iron power loom introduced by Richard Roberts in 1830. It was the first loom that was more viable than a hand loom and was easily adjustable and reliable, which led to its widespread use in the Lancashire cotton industry.

<span class="mw-page-title-main">Bradford Industrial Museum</span> Industrial museum, Mill museum, Textile museum, in Eccleshill, Bradford

Bradford Industrial Museum, established 1974 in Moorside Mills, Eccleshill, Bradford, United Kingdom, specializes in relics of local industry, especially printing and textile machinery, kept in working condition for regular demonstrations to the public. There is a Horse Emporium in the old canteen block plus a shop in the mill, and entry is free of charge.

<span class="mw-page-title-main">Doffer</span>

A doffer is someone who removes ("doffs") bobbins, pirns or spindles holding spun fiber such as cotton or wool from a spinning frame and replaces them with empty ones. Historically, spinners, doffers, and sweepers each had separate tasks that were required in the manufacture of spun textiles. From the early days of the industrial revolution, this work, which requires speed and dexterity rather than strength, was often done by children. After World War I, the practice of employing children declined, ending in the United States in 1933. In modern textile mills, doffing machines have now replaced humans.

<span class="mw-page-title-main">Kirk Mill</span> Cotton mill in Chipping, Lancashire, England

Kirk Mill is an early example of an Arkwright-type cotton mill and a grade II listed building in Chipping, Lancashire, in Ribble Valley, to the north of Preston, Lancashire, England. It was built in the 1780s on the site of a corn mill dating from at least 1544. The mill continued spinning cotton using water frames and then throstles until 1886, when it was sold and became HJ Berry's chairmaking factory. It was powered by a 32 ft (9.8 m) waterwheel which continued in use, generating electricity until the 1940s.

Doubling is a textile industry term synonymous with combining. It can be used for various processes during spinning. During the carding stage, several sources of roving are doubled together and drawn, to remove variations in thickness. After spinning, yarn is doubled for many reasons. Yarn may be doubled to produce warp for weaving, to make cotton for lace, crochet and knitting. It is used for embroidery threads and sewing threads, for example: sewing thread is usually 6-cable thread. Two threads of spun 60s cotton are twisted together, and three of these double threads are twisted into a cable, of what is now 5s yarn. This is mercerised, gassed and wound onto a bobbin.

<span class="mw-page-title-main">Tower Mill, Dukinfield</span> Cotton mill in Greater Manchester, England

Tower Mill is a cotton mill in Dukinfield, Greater Manchester, England. It is a grade II listed building. It was designed by Potts, Pickup & Dixon in 1885 and spun cotton, using mules and spinning frames until 1955 when it was no longer used as a cotton mill and was subsequently used by various industries and divided into small units, at one point plans were even passed for the mill to be converted into luxury apartments but with the recession in 2007/8 this plan was abandoned. After several years of lying empty it was eventually bought in 2013, restored and re-equipped to ring spin superfine cotton yarns in 2016 and is now after the absence for many years the only cotton mill in production in the United Kingdom.

References

  1. Marsden 1884 , p. 297
  2. 1 2 Williams & Farnie 1992 , p. 8
  3. 1 2 Marsden 1884 , p. 298
  4. "Investigating Disruptive Technology The Emergence Of Ring Spinning In The American Textile Industry". Harvard Business School, Baker Library. Retrieved 2009-04-30.
  5. Gilkerson, Yancy S. "Textile Industry Meets Demand Of Booming U.S. Population 1887–1900". Textile World. Retrieved 2009-04-30.
  6. 1 2 "Hopedale inventors". Archived from the original on 2009-08-07. Retrieved 2009-04-30.
  7. Marsden 1884 , p. 300
  8. Marsden 1884 , p. 308
  9. Marsden 1884 , p. 307
  10. Williams & Farnie 1992
  11. 1 2 Leunig, Timothy (November 2002). "Can profitable arbitrage opportunities in the raw cotton market explain Britain's continued preference for mule spinning?" (PDF). London: London School of Economics.{{cite journal}}: Cite journal requires |journal= (help)
  12. Toms (1998). "Growth profit and Technological Choice. The case for the Lancashire Cotton Industry". Journal of Industrial History.
  13. "Ring-spinning-system-for-making-yarn-having-a-magnetically-elevated-ring" . Retrieved 23 November 2010.
  14. Marsden 1884 , p. 302

Bibliography