Tool and cutter grinder

Last updated
View of a typical setup on a T&C grinder ToolandCutterGrinder-table-head.jpg
View of a typical setup on a T&C grinder

A Tool and Cutter Grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.

Contents

It is an extremely versatile machine used to perform a variety of grinding operations: surface, cylindrical, or complex shapes. The image shows a manually operated setup, however highly automated Computer Numerical Control (CNC) machines are becoming increasingly common due to the complexities involved in the process.

The operation of this machine (in particular, the manually operated variety) requires a high level of skill. The two main skills needed are understanding of the relationship between the grinding wheel and the metal being cut and knowledge of tool geometry. The illustrated set-up is only one of many combinations available. The huge variety in shapes and types of machining cutters requires flexibility in usage. A variety of dedicated fixtures are included that allow cylindrical grinding operations or complex angles to be ground. The vise shown can swivel in three planes.

The table moves longitudinally and laterally, the head can swivel as well as being adjustable in the horizontal plane, as visible in the first image. This flexibility in the head allows the critical clearance angles required by the various cutters to be achieved.

CNC tool and cutter grinder

A modern CNC tool grinder with automatic wheel pack exchanger and tool loading capabilities. ANCA MX7 CNC Tool Grinder.jpg
A modern CNC tool grinder with automatic wheel pack exchanger and tool loading capabilities.

Today's tool and cutter grinder is typically a CNC machine tool, usually 5 axes, which produces endmills, drills, step tools, etc. which are widely used in the metal cutting and woodworking industries.

Modern CNC tool and cutter grinders enhance productivity by typically offering features such as automatic tool loading as well as the ability to support multiple grinding wheels. High levels of automation, as well as automatic in-machine tool measurement and compensation, allow extended periods of unmanned production. With careful process configuration and appropriate tool support, tolerances less than 5 micrometres (0.0002") can be consistently achieved even on the most complex parts.

Apart from manufacturing, in-machine tool measurement using touch-probe or laser technology allows cutting tools to be reconditioned. During normal use, cutting edges either wear and/or chip. The geometric features of cutting tools can be automatically measured within the CNC tool grinder and the tool ground to return cutting surfaces to optimal condition.

Significant software advancements have allowed CNC tool and cutter grinders to be utilized in a wide range of industries. Advanced CNC grinders feature sophisticated software that allows geometrically complex parts to be designed either parametrically or by using third party CAD/CAM software. 3D simulation of the entire grinding process and the finished part is possible as well as detection of any potential mechanical collisions and calculation of production time. Such features allow parts to be designed and verified, as well as the production process optimized, entirely within the software environment.

Tool and cutter grinders can be adapted to manufacturing precision machine components. The machine, when used for these purposes more likely would be called a CNC Grinding System.

CNC Grinding Systems are widely used to produce parts for aerospace, medical, automotive, and other industries. Extremely hard and exotic materials are generally no problem for today's grinding systems and the multi-axis machines are capable of generating quite complex geometries.

Radius grinder

A radius grinder (or radius tool grinder) is a special grinder used for grinding the most complex tool forms, and is the historical predecessor to the CNC tool and cutter grinder. Like the CNC grinder, it may be used for other tasks where grinding spherical surfaces is necessary. The tool itself consists of three parts: The grinder head, work table, and holding fixture. The grinder head has three degrees of freedom. Vertical movement, movement into the workpiece, and tilt. These are generally set statically, and left fixed throughout operations. The work table is a T-slotted X-axis table mounted on top of a radial fixture. Mounting the X axis on top of the radius table, as opposed to the other way around, allows for complex and accurate radius grinds. The holding fixtures can be anything one can mount on a slotted table, but most commonly used is a collet or chuck fixture that indexes and has a separate Y movement to allow accurate depth setting and endmill sharpening. The dressers used on these grinders are usually quite expensive, and can dress the grinding wheel itself with a particular radius.

D-bit grinder

D bit grinder ToolandCutterGrinder-Pantograph-Dbit.jpg
D bit grinder

The D-bit (after Friedrich Deckel, [1] the brand of the original manufacturer) grinder is a tool bit grinder designed to produce single-lip cutters for pantograph milling machines. Pantographs are a variety of milling machine used to create cavities for the dies used in the molding process; they are largely obsolete and replaced by CNC machining centers in modern industry.

With the addition of accessory holders, the single-lip grinding capability may also be applied to grinding lathe cutting bits, and simple faceted profiles on tips of drill bits or end mills. The machine is sometimes advertised as a "universal cutter-grinder", but the "universal" term refers only to the range of compound angles available, not that the machine is capable of sharpening the universe of tools. The machine is not capable of sharpening drill bits in the standard profiles, or generating any convex or spiral profiles.

Related Research Articles

<span class="mw-page-title-main">Router (woodworking)</span> Woodworking power tool

The router is a power tool with a flat base and a rotating blade extending past the base. The spindle may be driven by an electric motor or by a pneumatic motor. It routs an area in hard material, such as wood or plastic. Routers are used most often in woodworking, especially cabinetry. They may be handheld or affixed to router tables. Some woodworkers consider the router one of the most versatile power tools.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Machinist</span> Technician

A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools

In machining, numerical control, also called computer numerical control (CNC), is the automated control of tools by means of a computer. It is used to operate tools such as drills, lathes, mills, grinders, routers and 3D printers. CNC transforms a piece of material into a specified shape by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Printed circuit board milling</span> Milling process for PCBs

Printed circuit board milling is the milling process used for removing areas of copper from a sheet of printed circuit board (PCB) material to recreate the pads, signal traces and structures according to patterns from a digital circuit board plan known as a layout file. Similar to the more common and well known chemical PCB etch process, the PCB milling process is subtractive: material is removed to create the electrical isolation and ground planes required. However, unlike the chemical etch process, PCB milling is typically a non-chemical process and as such it can be completed in a typical office or lab environment without exposure to hazardous chemicals. High quality circuit boards can be produced using either process. In the case of PCB milling, the quality of a circuit board is chiefly determined by the system's true, or weighted, milling accuracy and control as well as the condition of the milling bits and their respective feed/rotational speeds. By contrast, in the chemical etch process, the quality of a circuit board depends on the accuracy and/or quality of the mask used to protect the copper from the chemicals and the state of the etching chemicals.

<span class="mw-page-title-main">Grinding machine</span> Machine tool used for grinding

A grinding machine, often shortened to grinder, is a power tool used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.

A grinding dresser or wheel dresser is a tool to dress the surface of a grinding wheel. Grinding dressers are used to return a wheel to its original round shape, to expose fresh grains for renewed cutting action, or to make a different profile on the wheel's edge. Utilizing pre-determined dressing parameters will allow the wheel to be conditioned for optimum grinding performance while truing and restoring the form simultaneously.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

<span class="mw-page-title-main">Burr (cutter)</span> Small cutting tool

Burrs or burs are small cutting tools; not to be confused with small pieces of metal formed from cutting metal, used in die grinders, rotary tools, or dental drills. The name may be considered appropriate when their small-sized head is compared to a bur or their teeth are compared to a metal burr.

<span class="mw-page-title-main">Rotary table</span> Tool used in metalworking

A rotary table is a precision work positioning device used in metalworking. It enables the operator to drill or cut work at exact intervals around a fixed axis. Some rotary tables allow the use of index plates for indexing operations, and some can also be fitted with dividing plates that enable regular work positioning at divisions for which indexing plates are not available. A rotary fixture used in this fashion is more appropriately called a dividing head.

<span class="mw-page-title-main">End mill</span> Milling cutter designed to cut axially

An end mill is a type of milling cutter, a cutting tool used in industrial milling applications. It is distinguished from the drill bit in its application, geometry, and manufacture. While a drill bit can only cut in the axial direction, most milling bits can cut in the radial direction. Not all mills can cut axially; those designed to cut axially are known as end mills.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals.

Gear cutting is any machining process for creating a gear. The most common gear-cutting processes include hobbing, broaching, milling, grinding, and skiving. Such cutting operations may occur either after or instead of forming processes such as forging, extruding, investment casting, or sand casting.

<span class="mw-page-title-main">Rotary tool</span> Handheld power tool used for grinding, drilling, machining, etc.

A die grinder or rotary tool is a handheld power tool and multitool used for grinding, sanding, honing, polishing, or machining material. All such tools are conceptually similar, with no bright dividing line between die grinders and rotary tools, although the die grinder name tends to be used for pneumatically driven heavy-duty versions whereas the rotary tool name tends to be used for electric lighter-duty versions. Flexible shaft drive versions also exist.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

<span class="mw-page-title-main">CNC router</span> Computer-controlled cutting machine

A computer numerical control (CNC) router is a computer-controlled cutting machine which typically mounts a hand-held router as a spindle which is used for cutting various materials, such as wood, composites, metals, plastics, glass, and foams. CNC routers can perform the tasks of many carpentry shop machines such as the panel saw, the spindle moulder, and the boring machine. They can also cut joinery such as mortises and tenons.

<span class="mw-page-title-main">WorkNC</span>

WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.

<span class="mw-page-title-main">Milling (machining)</span> Removal of material from a workpiece using rotating tools

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

References

  1. "ISOG Technology - Innovative Solutions to Optimize Grinding". ISOG Technology. Retrieved 18 August 2023.