Uniform coloring

Last updated
Uniform tiling 63-t0.png
111
Uniform tiling 63-t12.png
112
Uniform tiling 333-t012.png
123
The hexagonal tiling has 3 uniform colorings.
The square tiling has 9 uniform colorings:
1111, 1112(a), 1112(b),
1122, 1123(a), 1123(b),
1212, 1213, 1234. Square tiling uniform colorings.png
The square tiling has 9 uniform colorings:
1111, 1112(a), 1112(b),
1122, 1123(a), 1123(b),
1212, 1213, 1234.

In geometry, a uniform coloring is a property of a uniform figure (uniform tiling or uniform polyhedron) that is colored to be vertex-transitive. Different symmetries can be expressed on the same geometric figure with the faces following different uniform color patterns.

Contents

A uniform coloring can be specified by listing the different colors with indices around a vertex figure.

n-uniform figures

In addition, an n-uniform coloring is a property of a uniform figure which has n types vertex figure, that are collectively vertex transitive.

Archimedean coloring

A related term is Archimedean color requires one vertex figure coloring repeated in a periodic arrangement. A more general term are k-Archimedean colorings which count k distinctly colored vertex figures.

For example, this Archimedean coloring (left) of a triangular tiling has two colors, but requires 4 unique colors by symmetry positions and become a 2-uniform coloring (right):

2-uniform triangular tiling 111112.png
1-Archimedean coloring
111112
2-uniform triangular tiling 112345-121545.png
2-uniform coloring
112344 and 121434

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Truncated trihexagonal tiling</span>

In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Elongated triangular tiling</span>

In geometry, the elongated triangular tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It is named as a triangular tiling elongated by rows of squares, and given Schläfli symbol {3,6}:e.

<span class="mw-page-title-main">Isohedral figure</span> ≥2-dimensional tessellation or ≥3-dimensional polytope with identical faces

In geometry, a tessellation of dimension 2 or higher, or a polytope of dimension 3 or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any two faces A and B, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">Truncated triheptagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}.

<span class="mw-page-title-main">Rhombitetrahexagonal tiling</span>

In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.

<span class="mw-page-title-main">Rhombitrioctagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the rhombitrioctagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one octagon, alternating between two squares. The tiling has Schläfli symbol rr{8,3}. It can be seen as constructed as a rectified trioctagonal tiling, r{8,3}, as well as an expanded octagonal tiling or expanded order-8 triangular tiling.

References