Upper motor neuron

Last updated
Upper motor neuron
Gray764.png
The motor tract
Identifiers
FMA 84631
Anatomical terminology

Upper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs represent the major origin point for voluntary somatic movement.

Contents

Upper motor neurons represent the largest pyramidal cells in the motor regions of the cerebral cortex. The major cell type of the UMNs is the Betz cells residing in layer V of the primary motor cortex, located on the precentral gyrus in the posterior frontal lobe. The cell bodies of Betz cell neurons are the largest in the brain, approaching nearly 0.1 mm in diameter. The axons of the upper motor neurons project out of the precentral gyrus travelling through to the brainstem, where they will decussate (intersect) within the lower medulla oblongata to form the lateral corticospinal tract on each side of the spinal cord. The fibers that do not decussate will pass through the medulla and continue on to form the anterior corticospinal tracts.

The upper motor neuron descends in the spinal cord to the level of the appropriate spinal nerve root. At this point, the upper motor neuron synapses with the lower motor neuron or interneurons within the ventral horn of the spinal cord, each of whose axons innervate a fiber of skeletal muscle. [1] [2]

These neurons connect the brain to the appropriate level in the spinal cord, from which point nerve signals continue to the muscles by means of the lower motor neurons. The neurotransmitter glutamate transmits the nerve impulses from upper to lower motor neurons, where it is detected by glutamate receptors.

Pathways

Upper motor neurons travel in several neural pathways through the central nervous system (CNS):

TractPathwayFunction
corticospinal tract from the motor cortex to lower motor neurons in the ventral horn of the spinal cordThe major function of this pathway is fine voluntary motor control of the limbs. The pathway also controls voluntary body posture adjustments.
corticobulbar tract from the motor cortex to several nuclei in the pons and medulla oblongata Involved in control of facial and jaw musculature, swallowing and tongue movements.
colliculospinal tract (tectospinal tract) from the superior colliculus to lower motor neuronsInvolved in involuntary adjustment of head position in response to visual information.
rubrospinal tract from red nucleus to lower motor neuronsInvolved in involuntary adjustment of arm position in response to balance information; support of the body.
vestibulospinal tract from vestibular nuclei, which processes stimuli from semicircular canals It is responsible for adjusting posture to maintain balance.
reticulospinal tract from reticular formation Regulates various involuntary motor activities and assists in balance.

Lesions

Any upper motor neuron lesion, also known as pyramidal insufficiency, occurs in the neural pathway above the anterior horn of the spinal cord. Such lesions can arise as a result of stroke, multiple sclerosis, spinal cord injury or other acquired brain injury. The resulting changes in muscle performance that can be wide and varied are described overall as upper motor neuron syndrome. Symptoms can include muscle weakness, decreased motor control including a loss of the ability to perform fine movements, increased vigor (and decreased threshold) of spinal reflexes including spasticity, clonus (involuntary, successive cycles of contraction/relaxation of a muscle), and an extensor plantar response known as the Babinski sign. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Motor neuron</span> Nerve cell sending impulse to muscle

A motor neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuron – upper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

The motor system is the set of central and peripheral structures in the nervous system that support motor functions, i.e. movement. Peripheral structures may include skeletal muscles and neural connections with muscle tissues. Central structures include cerebral cortex, brainstem, spinal cord, pyramidal system including the upper motor neurons, extrapyramidal system, cerebellum, and the lower motor neurons in the brainstem and the spinal cord.

Pronator quadratus is a square-shaped muscle on the distal forearm that acts to pronate the hand.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three', and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Somatic nervous system</span> Part of the peripheral nervous system

The somatic nervous system (SNS), or voluntary nervous system is the part of the peripheral nervous system associated with the voluntary control of body movements via skeletal muscles.

<span class="mw-page-title-main">Internal capsule</span> White matter structure situated in the inferomedial part of each cerebral hemisphere of the brain

The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the globus pallidus. The internal capsule contains both ascending and descending axons, going to and coming from the cerebral cortex. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.

<span class="mw-page-title-main">Afferent nerve fiber</span> Axonal projections that arrive at a particular brain region

Afferent nerve fibers are axons of sensory neurons that carry sensory information from sensory receptors to the central nervous system. Many afferent projections arrive at a particular brain region.

<span class="mw-page-title-main">Pyramidal tracts</span> Include both the corticobulbar tract and the corticospinal tract

The pyramidal tracts include both the corticobulbar tract and the corticospinal tract. These are aggregations of efferent nerve fibers from the upper motor neurons that travel from the cerebral cortex and terminate either in the brainstem (corticobulbar) or spinal cord (corticospinal) and are involved in the control of motor functions of the body.

<span class="mw-page-title-main">Spinothalamic tract</span> Sensory pathway from the skin to the thalamus

The spinothalamic tract is a part of the anterolateral system or the ventrolateral system, a sensory pathway to the thalamus. From the ventral posterolateral nucleus in the thalamus, sensory information is relayed upward to the somatosensory cortex of the postcentral gyrus.

<span class="mw-page-title-main">Dorsal column–medial lemniscus pathway</span> Sensory spinal pathway

The dorsal column–medial lemniscus pathway (DCML) is a sensory pathway of the central nervous system that conveys sensations of fine touch, vibration, two-point discrimination, and proprioception from the skin and joints. It transmits information from the body to the primary somatosensory cortex in the postcentral gyrus of the parietal lobe of the brain. The pathway receives information from sensory receptors throughout the body, and carries this in nerve tracts in the white matter of the dorsal column of the spinal cord to the medulla, where it is continued in the medial lemniscus, on to the thalamus and relayed from there through the internal capsule and transmitted to the somatosensory cortex. The name dorsal-column medial lemniscus comes from the two structures that carry the sensory information: the dorsal columns of the spinal cord, and the medial lemniscus in the brainstem.

<span class="mw-page-title-main">Corticobulbar tract</span> Motor pathway in the brain connecting the motor cortex to the medullary pyramids

In neuroanatomy, the corticobulbartract is a two-neuron white matter motor pathway connecting the motor cortex in the cerebral cortex to the medullary pyramids, which are part of the brainstem's medulla oblongata region, and are primarily involved in carrying the motor function of the non-oculomotor cranial nerves. The corticobulbar tract is one of the pyramidal tracts, the other being the corticospinal tract.

<span class="mw-page-title-main">Precentral gyrus</span> Motor gyrus of the posterior frontal lobe of the brain

The precentral gyrus is a prominent gyrus on the surface of the posterior frontal lobe of the brain. It is the site of the primary motor cortex that in humans is cytoarchitecturally defined as Brodmann area 4.

The rectus femoris muscle is one of the four quadriceps muscles of the human body. The others are the vastus medialis, the vastus intermedius, and the vastus lateralis. All four parts of the quadriceps muscle attach to the patella by the quadriceps tendon.

<span class="mw-page-title-main">Facial motor nucleus</span>

The facial motor nucleus is a collection of neurons in the brainstem that belong to the facial nerve. These lower motor neurons innervate the muscles of facial expression and the stapedius.

<span class="mw-page-title-main">Lateral corticospinal tract</span>

The lateral corticospinal tract is the largest part of the corticospinal tract. It extends throughout the entire length of the spinal cord, and on transverse section appears as an oval area in front of the posterior column and medial to the posterior spinocerebellar tract.

<span class="mw-page-title-main">Alpha motor neuron</span>

Alpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate intrafusal muscle fibers of muscle spindles.

<span class="mw-page-title-main">Medullary pyramids (brainstem)</span> White matter structures within the brainstems medulla oblongata

In neuroanatomy, the medullary pyramids are paired white matter structures of the brainstem's medulla oblongata that contain motor fibers of the corticospinal and corticobulbar tracts – known together as the pyramidal tracts. The lower limit of the pyramids is marked when the fibers cross (decussate).

<span class="mw-page-title-main">Spinal cord</span> Long, tubular central nervous system structure in the vertebral column

The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal cord is hollow and contains a structure called central canal, which contains cerebrospinal fluid. The spinal cord is also covered by meninges and enclosed by the neural arches. Together, the brain and spinal cord make up the central nervous system (CNS).

<span class="mw-page-title-main">Primary motor cortex</span> Brain region

The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.

<span class="mw-page-title-main">Corticospinal tract</span> Pyramidal white matter motor pathway

The corticospinal tract is a white matter motor pathway starting at the cerebral cortex that terminates on lower motor neurons and interneurons in the spinal cord, controlling movements of the limbs and trunk. There are more than one million neurons in the corticospinal tract, and they become myelinated usually in the first two years of life.

References

  1. Saladin, Kenneth S. Anatomy & Physiology: The Unity of Form and Function. Dubuque: McGraw-Hill, 2010. Print.
  2. "Frontal Lobe". Rice University Web Calendar. 26 June 2000. Web. 06 Dec. 2010. < "Frontal Lobe". Archived from the original on 2010-07-26. Retrieved 2010-12-07.>.
  3. Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (9 May 2018). "Damage to Descending Motor Pathways: The Upper Motor Neuron Syndrome". Archived from the original on 3 May 2018. Retrieved 9 May 2018 via www.ncbi.nlm.nih.gov.{{cite journal}}: Cite journal requires |journal= (help)