1993 Milwaukee cryptosporidiosis outbreak

Last updated
1993 Milwaukee cryptosporidiosis outbreak
Disease Cryptosporidiosis
Parasite strain Cryptosporidium
SourceContaminated water filtration plant
Location Milwaukee, Wisconsin
First reportedApril 4, 1993
Confirmed cases403,000
Deaths
69

The 1993 Milwaukee cryptosporidiosis outbreak was a significant distribution of the Cryptosporidium protozoan in Milwaukee, Wisconsin, and the largest waterborne disease outbreak in documented United States history. It is suspected that The Howard Avenue Water Purification Plant, one of two water treatment plants in Milwaukee at the time, was contaminated. It is believed that the contamination was due to an ineffective filtration process. [1] Approximately 403,000 residents were affected resulting in illness and hospitalization. Immediate repairs were made to the treatment facilities along with continued infrastructure upgrades during the 25 years since the outbreak. The total cost of the outbreak, in productivity loss and medical expenses, was $96 million. [1] At least 69 people died as a result of the outbreak. [1] The city of Milwaukee has spent upwards to $510 million in repairs, upgrades, and outreach to citizens.

Contents

Epidemiology

Cryptosporidium are a chlorine-resistant enteric pathogens that cause gastrointestinal illness (cryptosporidiosis) with symptoms such as diarrhea. Other symptoms include stomach cramps, dehydration, nausea, vomiting, fever, or weight loss. [2] Symptoms can be more severe for people who are immunocompromised, for whom diarrhea can lead to death. [3] Enteric pathogens are microorganisms that humans ingest, typically through contaminated food or water. [4] Since Cryptosporidium is a coccidian parasite, it has oocysts. [3] An oocyst is a period in the life cycle of a coccidian parasite. The oocysts in Cryptosporidium are the transmissible stage for cryptosporidiosis. [3] [2]

Most reports do not specify the species of Cryptosporidium involved in the outbreak. Several species cause cryptosporidiosis in humans, with most caused by Cryptosporidium parvum and Cryptosporidium hominis . [5] However adding to the confusion, these two species were only split from each other in 2002. [5] In 2003, Phaedra S. Corso et al. imply without evidence that it was C. parvum. [1] In 2001, Alicia C. McDonald et al. clearly state that C. parvum is the cause, [6] but the 1994 source they cite does not specify the species. [7] McDonald et al. do find positive results testing blood samples with antigens derived from C. parvum, [6] but a 2018 paper from Sumeeta Khurana and Preeti Chaudhary indicate that antigen tests are not species-specific and that molecular methods are needed to differentiate other species. [8] A 2003 study by Ling Zhou et al. specifically addresses these issues and clearly identifies the pathogen in this outbreak as C. hominis. [9]

History

On April 4, 1993, pharmacist Jeff Langer contacted a local television station after the Milwaukee Health Department didn't respond to his calls regarding substantial increase in gastrointestinal complaints. Sunday evening, April 4, the station came out to interview Jeff Langer regarding the substantial increase in requests for anti-diarrhea medications. Following that television interview, April 5, 1993, Milwaukee Health Department received additional reports of gastrointestinal illness at their local hospitals and calls of complaints related to reduced water-quality aesthetic. Water aesthetics include taste, color, odor, hardness/softness, and turbidity. They are considered a secondary standard under the EPA National Primary Drinking Water Regulations (NPDWR). Although these drinking aesthetics are under the EPA NPDWR, they are not federally enforced but are standard regulations that states may choose to adopt and enforce themselves. In the spring of 1993, turbidity was the main complaint. This was corroborated by Milwaukee Water Works records of Maximal Turbidity for both water treatment plants from March through April 1993. [7]

Causes

The root cause of the epidemic was never officially identified, however, it was most likely the result of human error at the Howard Avenue Water Treatment Plant. Initially it was suspected to be caused by runoff from upstream cattle pastures. [7] It was also thought that melting ice and snowmelt carrying Cryptosporidium may have entered the water treatment plants through Lake Michigan. [10]

MacKenzie et al. and the CDC showed that this outbreak was caused by Cryptosporidium oocysts that passed through the filtration system of one of the city's water-treatment plants, arising from a sewage treatment plant's outlet two miles upstream in Lake Michigan. This abnormal condition at the water purification plant lasted from March 23 through April 8, after which, the plant was shut down. Over the span of approximately two weeks, 403,000 [11] of an estimated 1.61 million residents in the Milwaukee area (of which 880,000 were served by the malfunctioning treatment plant) became ill with the stomach cramps, fever, diarrhea and dehydration caused by the pathogen. [11] After the outbreak, cryptosporidiosis antibody rates among Milwaukee children reached 80%, compared to only 10% prior to the outbreak. [12] Deaths have been attributed to this outbreak, mostly among the elderly and immunocompromised people, such as people with AIDS. [1]

Social Impact

Reports of gastrointestinal illness began in April 1993, however, studies occurring after the outbreak confirmed that there were echoes of the epidemic beyond initial contamination as the population contracted the illness through secondary transmission. [7] This resulted in negative public sentiment toward Milwaukee Water Works. Carrie Lewis, superintendent of Milwaukee water works in 2015, explained that "people had been hurt, they felt let down by their drinking water and it took a long time for them to believe that we knew what we were doing again,’ [13] It took ten years for Milwaukee citizens to begin to trust the public water supply again with the help of frequent community outreach by the utility. [13]

Current Treatment in Milwaukee

Currently, Milwaukee consistently scores as one of the highest drinking water qualities in the state. [14] This is due to $508 million invested in water treatment and monitoring improvements since the outbreak. [14] [15] Improvements in treatment include:

See also

Related Research Articles

<span class="mw-page-title-main">Drinking water</span> Water safe for consumption

Drinking water or potable water is water that is safe for ingestion, either when drunk directly in liquid form or consumed indirectly through food preparation. It is often supplied through taps, in which case it is also called tap water. Typically in developed countries, tap water meets drinking water quality standards, even though only a small proportion is actually consumed or used in food preparation. Other typical uses for tap water include washing, toilets, and irrigation. Greywater may also be used for toilets or irrigation. Its use for irrigation however may be associated with risks.

<span class="mw-page-title-main">Cryptosporidiosis</span> Parasitic disease

Cryptosporidiosis, sometimes informally called crypto, is a parasitic disease caused by Cryptosporidium, a genus of protozoan parasites in the phylum Apicomplexa. It affects the distal small intestine and can affect the respiratory tract in both immunocompetent and immunocompromised individuals, resulting in watery diarrhea with or without an unexplained cough. In immunosuppressed individuals, the symptoms are particularly severe and can be fatal. It is primarily spread through the fecal-oral route, often through contaminated water; recent evidence suggests that it can also be transmitted via fomites contaminated with respiratory secretions.

<span class="mw-page-title-main">Isosporiasis</span> Human intestinal disease

Isosporiasis, also known as cystoisosporiasis, is a human intestinal disease caused by the parasite Cystoisospora belli. It is found worldwide, especially in tropical and subtropical areas. Infection often occurs in immuno-compromised individuals, notably AIDS patients, and outbreaks have been reported in institutionalized groups in the United States. The first documented case was in 1915. It is usually spread indirectly, normally through contaminated food or water (CDC.gov).

<span class="mw-page-title-main">Coccidia</span> Subclass of protists

Coccidia (Coccidiasina) are a subclass of microscopic, spore-forming, single-celled obligate intracellular parasites belonging to the apicomplexan class Conoidasida. As obligate intracellular parasites, they must live and reproduce within an animal cell. Coccidian parasites infect the intestinal tracts of animals, and are the largest group of apicomplexan protozoa.

Coccidiosis is a parasitic disease of the intestinal tract of animals caused by coccidian protozoa. The disease spreads from one animal to another by contact with infected feces or ingestion of infected tissue. Diarrhea, which may become bloody in severe cases, is the primary symptom. Most animals infected with coccidia are asymptomatic, but young or immunocompromised animals may suffer severe symptoms and death.

<i>Cryptosporidium parvum</i> Species of single-celled organism

Cryptosporidium parvum is one of several species that cause cryptosporidiosis, a parasitic disease of the mammalian intestinal tract.

<i>Cryptosporidium</i> Genus of single-celled organisms

Cryptosporidium, sometimes called crypto, is an apicomplexan genus of alveolates which are parasites that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea, sometimes with a persistent cough.

Wilderness-acquired diarrhea is a variety of traveler's diarrhea in which backpackers and other outdoor enthusiasts are affected. Potential sources are contaminated food or water, or "hand-to-mouth", directly from another person who is infected. Cases generally resolve spontaneously, with or without treatment, and the cause is typically unknown. The National Outdoor Leadership School has recorded about one incident per 5,000 person-field days by following strict protocols on hygiene and water treatment. More limited, separate studies have presented highly varied estimated rates of affliction that range from 3 percent to 74 percent of wilderness visitors. One survey found that long-distance Appalachian Trail hikers reported diarrhea as their most common illness. Based on reviews of epidemiologic data and literature, some researchers believe that the risks have been over-stated and are poorly understood by the public.

<span class="mw-page-title-main">Cyclosporiasis</span> Medical condition

Cyclosporiasis is a disease caused by infection with Cyclospora cayetanensis, a pathogenic apicomplexan protozoan transmitted by feces or feces-contaminated food and water. Outbreaks have been reported due to contaminated fruits and vegetables. It is not spread from person to person, but can be a hazard for travelers as a cause of diarrhea.

<i>Cyclospora cayetanensis</i> Species of single-celled organism

Cyclospora cayetanensis is a coccidian parasite that causes a diarrheal disease called cyclosporiasis in humans and possibly in other primates. Originally reported as a novel pathogen of probable coccidian nature in the 1980s and described in the early 1990s, it was virtually unknown in developed countries until awareness increased due to several outbreaks linked with fecally contaminated imported produce. C. cayetanensis has since emerged as an endemic cause of diarrheal disease in tropical countries and a cause of traveler's diarrhea and food-borne infections in developed nations. This species was placed in the genus Cyclospora because of the spherical shape of its sporocysts. The specific name refers to the Cayetano Heredia University in Lima, Peru, where early epidemiological and taxonomic work was done.

<span class="mw-page-title-main">Waterborne disease</span> Diseases caused by pathogenic microorganisms transmitted by waters

Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted by water. These diseases can be spread while bathing, washing, drinking water, or by eating food exposed to contaminated water. They are a pressing issue in rural areas amongst developing countries all over the world. While diarrhea and vomiting are the most commonly reported symptoms of waterborne illness, other symptoms can include skin, ear, respiratory, or eye problems. Lack of clean water supply, sanitation and hygiene (WASH) are major causes for the spread of waterborne diseases in a community. Therefore, reliable access to clean drinking water and sanitation is the main method to prevent waterborne diseases.

The discovery of disease-causing pathogens is an important activity in the field of medical science. Many viruses, bacteria, protozoa, fungi, helminths, and prions are identified as a confirmed or potential pathogen. In the United States, a Centers for Disease Control and Prevention program, begun in 1995, identified over a hundred patients with life-threatening illnesses that were considered to be of an infectious cause but that could not be linked to a known pathogen. The association of pathogens with disease can be a complex and controversial process, in some cases requiring decades or even centuries to achieve.

Cryptosporidium hominis, along with Cryptosporidium parvum, is among the medically important Cryptosporidium species. It is an obligate parasite of humans that can colonize the gastrointestinal tract resulting in the gastroenteritis and diarrhea characteristic of cryptosporidiosis. Unlike C. parvum, which has a rather broad host range, C. hominis is almost exclusively a parasite of humans. As a result, C. hominis has a low zoonotic potential compared to C. parvum. It is spread through the fecal-oral route usually by drinking water contaminated with oocyst laden feces. There are many exposure risks that people can encounter in affected areas of the world. Cryptosporidium infections are large contributors of child death and illness in heavily affected areas, yet low importance has been placed on both identifying the species and finding more treatment options outside of nitazoxanide for children and AIDS patients.

<span class="mw-page-title-main">Protozoan infection</span> Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the kingdom Protozoa. These organisms are now classified in the supergroups Excavata, Amoebozoa, Harosa, and Archaeplastida. They are usually contracted by either an insect vector or by contact with an infected substance or surface.

The Long Term 2 Enhanced Surface Water Treatment Rule is a 2006 regulation promulgated by the United States Environmental Protection Agency (EPA) pursuant to the Safe Drinking Water Act. The rule required public water systems to install more stringent treatment systems to control the microorganism Cryptosporidium and other pathogens.

The 1987 Carroll County cryptosporidiosis outbreak was a significant distribution of the Cryptosporidium protozoan in Carroll County, Georgia. Between January 12 and February 7, 1987, approximately 13,000 of the 65,000 residents of the county suffered intestinal illness caused by the Cryptosporidium parasite. Cryptosporidiosis is characterized by watery diarrhea, stomach cramps or pain, dehydration, nausea, vomiting and fever. Symptoms typically last for 1–4 weeks in immunocompetent individuals.

Cryptosporidium varanii is a protozoal parasite that infects the gastrointestinal tract of lizards. C. varanii is often shed in the feces, and transmission is primarily via fecal-oral route. Unlike Cryptosporidium serpentis, C. varanii does not colonize the stomach, but rather the intestines of most infected lizards, such as geckos. An exception to this rule are monitor lizards, as gastric (stomach) lesions have been found in those species. Oocysts of lizard Cryptosporidium are larger than the snake counterpart.

Cryptosporidium serpentis is a protozoal parasite that infects the gastrointestinal tract of snakes. Sporated oocysts of C. serpentis are intermittently shed in the feces, and transmission is primarily via fecal-oral route. C. serpentis is a gastric parasite, primarily colonizing the stomach. Unlike mammalian Cryptosporidium - that is usually self-limiting - C. serpentis remains chronic and in most cases, eventually lethal in snakes once an animal has become symptomatic. However, recent advancements in detection have led to the identification of healthy carrier animals some of which have thus far remained in good health for years and cast doubt on previous assumptions about the lethality of the parasite, though it remains to be seen how many carriers will remain healthy and for how long as most such animals are euthanized immediately. Cryptosporidiosis infection has been documented in a variety of snake species worldwide, such as North American Corn snakes and Australian Taipans, both free-living and captive. Necropsy examinations of expired captive snakes infected with C. serpentis note characteristic gastric mucosal hypertrophy that, in time, narrows the gastric lumen, resulting in classic symptoms of repetitive regurgitation and anorexia. Due to the enlargement of the stomach lining, a noticeable midbody bulge can be palpable and commonly visible. Frequent mucoid stools have been reported. However, some snakes will display no external symptoms at all throughout their lifetime, yet still remain infectious to counterparts.

Pollution of water resources in Haiti, as with many developing countries, is a major concern. The main cause of water pollution in the country is major deficiencies in the collection of solid waste and the absence or dysfunction of wastewater sanitation. In addition, the considerable increase in the population over the last decades coupled with a lack of urban planning by successive authorities in the country has led to massive degradation in the environment, while affecting the quality of available water resources. As a result, surface water and shallow groundwater are increasingly contaminated by micro-organisms such as bacteria, protozoa and viruses, exposing men, women and children to cholera, typhoid, Cryptosporidiosis and all kinds of waterborne diseases.

References

  1. 1 2 3 4 5 Corso PS, Kramer MH, Blair KA, Addiss DG, Davis JP, Haddix AC (April 2003). "Cost of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee, Wisconsin". Emerging Infectious Diseases. 9 (4): 426–431. doi:10.3201/eid0904.020417. PMC   2957981 . PMID   12702221.
  2. 1 2 Centers for Disease Control and Prevention. (2023). Parasites Glossary. Retrieved from Parasites: https://www.cdc.gov/parasites/glossary.html#oocyst Archived 2023-10-05 at the Wayback Machine
  3. 1 2 3 Centers for Disease Control and Prevention. (2023). Cryptosporidiosis. Retrieved from DPDx – Laboratory Identification of Parasites of Public Health Concern: https://www.cdc.gov/dpdx/cryptosporidiosis/index.html Archived 2019-11-07 at the Wayback Machine
  4. Division of Foodborne, Waterborne, and Environmental Diseases (DFWED) Home. (2023). Enteric Diseases Epidemiology Branch. Washington, D.C.: Centers for Disease Control and Prevention.
  5. 1 2 MORGAN-RYAN, UNA M.; FALL, ABBIE; WARD, LUCY A.; HIJJAWI, NAWAL; SULAIMAN, IRSHAD; PAYER, RONALD; THOMPSON, R. C. ANDREW; OLSON, M.; LAL, ALTAF; LIHUA, XIAO (November–December 2002). "Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens". Journal of Eukaryotic Microbiology. 49 (6): 433–440. doi:10.1111/j.1550-7408.2002.tb00224.x. ISSN   1550-7408. OCLC   4630522305. PMID   12503676. Archived from the original on 25 June 2024. Retrieved 25 June 2024.
  6. 1 2 McDonald, Alicia C.; Mac Kenzie, William R.; Addiss, David G.; Gradus, M. Stephen; Linke, George; Zembrowski, Elizabeth; Hurd, Margaret R.; Arrowood, Michael J.; Lammie, Patrick J.; Priest, Jeffrey W. (1 May 2001). "Cryptosporidium parvum–Specific Antibody Responses among Children Residing in Milwaukee during the 1993 Waterborne Outbreak". The Journal of Infectious Diseases. 183 (9): 1373–1379. doi:10.1086/319862. ISSN   1537-6613. OCLC   118846463. PMID   11294669. Archived from the original on 20 January 2022. Retrieved 25 June 2024.
  7. 1 2 3 4 Mac Kenzie, William R.; Hoxie, Neil J.; Proctor, Mary E.; Gradus, M. Stephen; Blair, Kathleen A.; Peterson, Dan E.; Kazmierczak, James J.; Addiss, David G.; Fox, Kim R.; Rose, Joan B.; Davis, Jeffrey P. (July 21, 1994). "A Massive Outbreak in Milwaukee of Cryptosporidium Infection Transmitted through the Public Water Supply". New England Journal of Medicine. 331 (3): 161–167. doi:10.1056/NEJM199407213310304. PMID   7818640 via CrossRef.
  8. Khurana, Sumeeta; Chaudhary, Preeti (January–June 2018). "Laboratory diagnosis of cryptosporidiosis". Tropical Parasitology. 8 (1): 2–7. doi: 10.4103/tp.TP_34_17 . ISSN   2229-5070. OCLC   7704802362. PMC   5991046 . PMID   29930899.
  9. Zhou, Ling; Singh, Ajaib; Jiang, Jianlin; Xiao, Lihua (1 November 2003). "Molecular Surveillance of Cryptosporidium spp. in Raw Wastewater in Milwaukee: Implications for Understanding Outbreak Occurrence and Transmission Dynamics". Journal of Clinical Microbiology. 41 (11): 5254–5257. doi:10.1128/jcm.41.11.5254-5257.2003. ISSN   0095-1137. OCLC   9173124979. PMC   262506 . PMID   14605176.
  10. Botkin DB, Keller EA (2005). Environmental Science: Earth as a Living Planet (5th ed.). Wiley. p. 441. ISBN   978-0-471-48816-3.
  11. 1 2 Hoxie NJ, Davis JP, Vergeront JM, Nashold RD, Blair KA (December 1997). "Cryptosporidiosis-associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin". American Journal of Public Health. 87 (12): 2032–2035. doi:10.2105/ajph.87.12.2032. PMC   1381251 . PMID   9431298.
  12. "Cryptosporidium in Milwaukee's water supply caused widespread illness". Infectious Disease News. No. September 2007. Healio. September 2007. Archived from the original on 21 February 2021. Retrieved 22 February 2021.
  13. 1 2 Lewis, C. (2015, January 9). Superintendent of Milwaukee Water Works. (M. Gonzalez, & B. Gonzalez, Interviewers)
  14. 1 2 City of Milwaukee. (2022). Water Quality. Retrieved from Milwaukee Water Works: https://city.milwaukee.gov/water/WaterQuality Archived 2023-12-04 at the Wayback Machine
  15. Ceraso, M. (2013). 20 years after fatal outbreak, Milwaukee leads on water testing. Wisconsin Water Watch.
  16. 1 2 3 4 5 Milwaukee Public Water Works. (2023). FAQs – Water Quality and Public Health – Water Treatment Process. Retrieved from City of Milwaukee: https://city.milwaukee.gov/water/customer/FAQs/qualityandhealth/Water-treatment-process.htm Archived 2023-04-13 at the Wayback Machine
  17. USEPA. (1999, September). Wastewater Technology Fact Sheet – Ozone Disinfection. Retrieved from Wastewater Technology Fact Sheet: https://www3.epa.gov/npdes/pubs/ozon.pdf Archived 2024-01-25 at the Wayback Machine

Further reading