4,5-Dichloro-1,2,3-dithiazolium chloride

Last updated
4,5-Dichloro-1,2,3-dithiazolium chloride
Appel'sSalt.svg
Names
Other names
Appel's salt
Identifiers
  • 75318-43-3
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C2Cl2NS2.ClH/c3-1-2(4)6-7-5-1;/h;1H/q+1;/p-1
    Key: NIZMCFUMSHISLW-UHFFFAOYSA-M
  • C1(=NS[S+]=C1Cl)Cl.[Cl-]
Properties
C2Cl3NS2
Molar mass 208.50 g·mol−1
Appearancegreen solid
Melting point 172 °C (342 °F; 445 K)decomposition
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's salt) is an organosulfur compound. It is the chloride salt of the 4,5-dichloro-1,2,3-dithiazolium cation. It is a green solid that is poorly soluble in organic solvents. [1]

Synthesis

The compound is obtained by the reaction of acetonitrile with sulfur monochloride. The initial phases of this reaction entail chlorination of the acetonitrile. The resulting dichloroacetonitrile undergoes cycloaddition with sulfur monochloride: [1]

Cl
2
CHCN + S
2
Cl
2
→ [S
2
NC
2
Cl
2
]Cl + HCl

The cation is highly electrophilic. It hydrolyzes readily. Protic nucleophiles displace one chloride: [2] [3]

[S
2
NC
2
Cl
2
]Cl + 2 RNH
2
→ S
2
NC
2
Cl(=NR) + [RNH
3
]Cl

The compound was discovered by Appel et al. [4]

Related Research Articles

Tosyl group

A toluenesulfonyl (shortened tosyl, abbreviated Ts or Tos) group, H3CC6H4SO2, is a univalent organic group that consists of a tolyl group, H3CC6H4, joined to a sulfonyl group, SO2, with the open valence on sulfur. This group is usually derived from the compound tosyl chloride, H3CC6H4SO2Cl (abbreviated TsCl), which forms esters and amides of toluenesulfonic acid, H3CC6H4SO2OH (abbreviated TsOH). The para orientation illustrated (p-toluenesulfonyl) is most common, and by convention tosyl without a prefix refers to the p-toluenesulfonyl group.

In organic chemistry, an acyl chloride (or acid chloride) is an organic compound with the functional group -COCl. Their formula is usually written RCOCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (F2, Cl2, Br2, I2). Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for the purpose of introducing halogens into diverse substrates, e.g. thionyl chloride.

Thionyl chloride Chemical compound

Thionyl chloride is an inorganic compound with the chemical formula SOCl
2
. It is a moderately volatile colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

Triphenylphosphine Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

The Pummerer rearrangement is an organic reaction whereby an alkyl sulfoxide rearranges to an α-acyloxy–thioether (monothioacetal-ester) in the presence of acetic anhydride.

Palladium(II) chloride Chemical compound

Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value in organic synthesis. It is prepared by the reaction of chlorine with palladium metal at high temperatures.

Cyanuric chloride Chemical compound

Cyanuric chloride is an organic compound with the formula (NCCl)3. This white solid is the chlorinated derivative of 1,3,5-triazine. It is the trimer of cyanogen chloride. Cyanuric chloride is the main precursor to the popular but controversial herbicide atrazine.

18-Crown-6 Chemical compound

18-Crown-6 is an organic compound with the formula [C2H4O]6 and the IUPAC name of 1,4,7,10,13,16-hexaoxacyclooctadecane. It is a white, hygroscopic crystalline solid with a low melting point. Like other crown ethers, 18-crown-6 functions as a ligand for some metal cations with a particular affinity for potassium cations (binding constant in methanol: 106 M−1). The point group of 18-crown-6 is S6. The dipole moment of 18-crown-6 varies in different solvent and under different temperature. Under 25 °C, the dipole moment of 18-crown-6 is 2.76 ± 0.06 D in cyclohexane and 2.73 ± 0.02 in benzene. The synthesis of the crown ethers led to the awarding of the Nobel Prize in Chemistry to Charles J. Pedersen.

Trimethylsilyl chloride Chemical compound

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound (silyl halide), with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

Pyrylium is a cation with formula C
5
H
5
O+
, consisting of a six-membered ring of five carbon atoms, each with one hydrogen atom, and one positively charged oxygen atom. The bonds in the ring are conjugated as in benzene, giving it an aromatic character. In particular, because of the positive charge, the oxygen atom is trivalent. Pyrilium is a mono-cyclic and heterocyclic compound, one of the oxonium ions.

Sulfur tetrafluoride Chemical compound

Sulfur tetrafluoride is the chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous HF upon exposure to water or moisture. Despite these unwelcome characteristics, this compound is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

Disulfur dichloride Chemical compound

Disulfur dichloride is the inorganic compound of sulfur and chlorine with the formula S2Cl2.

Sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

Sodium tetrachloropalladate Chemical compound

Sodium tetrachloropalladate is an inorganic compound with the chemical formula Na2PdCl4. This salt, and the analogous alkali metal salts of the form M2PdCl4, may be prepared simply by reacting palladium(II) chloride with the appropriate alkali metal chloride in aqueous solution. Palladium(II) chloride is insoluble in water, whereas the product dissolves:

Selenium monochloride Chemical compound

Selenium monochloride is an inorganic compound with the formula Se2Cl2. Although it is called selenium monochloride, a more descriptive name might be diselenium dichloride. It is a reddish-brown, oily liquid that hydrolyses slowly. It exists in chemical equilibrium with SeCl2, SeCl4, chlorine, and elemental selenium. Selenium monochloride is mainly used as a reagent for the synthesis of Se-containing compounds.

Bis(acetonitrile)palladium dichloride Chemical compound

Bis(acetonitrile)palladium dichloride is the coordination complex with the formula PdCl2(NCCH3)2. It is the adduct of two acetonitrile ligands with palladium(II) chloride. It is a yellow-brown solid that is soluble in organic solvents. The compound is a reagent and a catalyst for reactions that require soluble Pd(II). The compound is similar to bis(benzonitrile)palladium dichloride. It reacts with 1,5-cod to give dichloro(1,5‐cyclooctadiene)palladium.

Sulfenamide

Sulfenamides (also spelled sulphenamides) are a class of organosulfur compounds characterized by the general formula RSNR'2, where R and R' are H, alkyl, or aryl. Sulfenamides have been used extensively in the vulcanization of rubber using sulfur. They are related to the oxidized compounds sulfinamides (RS(O)NR'2) and sulfonamides (RS(O)2NR'2).

Metal halides

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. Covalently bonded metal halides may be discrete molecules, such as uranium hexafluoride, or they may form polymeric structures, such as palladium chloride.

Chloroacetonitrile Chemical compound

Chloroacetonitrile is the organic compound with the formula ClCH2CN. A colorless liquid, it is derived from acetonitrile (CH3CN) by replacement of one H with Cl. In practice, it is produced by dehydration of chloroacetamide. The compound is an alkylating agent, and as such is handled cautiously.

References

  1. 1 2 Rees, Charles W. (1992). "Polysulfur-Nitrogen Heterocyclic Chemistry". Journal of Heterocyclic Chemistry. 29 (3): 639–651. doi:10.1002/jhet.5570290306.
  2. Foucourt, Alicia; Chosson, Elizabeth; Besson, Thierry (2009). "4,5-Dichloro-1,2,3-dithiazol-1-ium Chloride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn01113. ISBN   978-0471936237.
  3. Cuadro, Ana M.; Alvarez-Buila, Julio (1994). "4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's Salt): Reactions with N-Nucleophiles". Tetrahedron. 50 (33): 10037–10046. doi:10.1016/S0040-4020(01)89619-8. hdl: 10017/3581 .
  4. Appel, Rolf; Janssen, Heinrich; Siray, Mustafa; Knoch, Falk (1985). "Synthese und Reaktionen des 4,5-Dichlor-1,2,3-dithiazolium-chlorids". Chemische Berichte. 118 (4): 1632–1643. doi:10.1002/cber.19851180430.