4,5-Dichloro-1,2,3-dithiazolium chloride

Last updated
4,5-Dichloro-1,2,3-dithiazolium chloride
Appel'sSalt.svg
Names
Other names
Appel's salt
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C2Cl2NS2.ClH/c3-1-2(4)6-7-5-1;/h;1H/q+1;/p-1
    Key: NIZMCFUMSHISLW-UHFFFAOYSA-M
  • C1(=NS[S+]=C1Cl)Cl.[Cl-]
Properties
C2Cl3NS2
Molar mass 208.50 g·mol−1
Appearancegreen solid
Melting point 172 °C (342 °F; 445 K) decomposition
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's salt) is an organosulfur compound. It is the chloride salt of the 4,5-dichloro-1,2,3-dithiazolium cation. It is a green solid that is poorly soluble in organic solvents. [1]

Synthesis

The compound is obtained by the reaction of acetonitrile with sulfur monochloride. The initial phases of this reaction entail chlorination of the acetonitrile. The resulting dichloroacetonitrile undergoes cycloaddition with sulfur monochloride: [1]

Cl2CHCN + S2Cl2[S2NC2Cl2]Cl + HCl

The cation is highly electrophilic. It hydrolyzes readily. Protic nucleophiles displace one chloride: [2] [3]

[S2NC2Cl2]Cl + 2 RNH2 → S2NC2Cl(=NR) + [RNH3]Cl

The compound was discovered by Appel et al. [4]

Related Research Articles

<span class="mw-page-title-main">Tosyl group</span> Chemical group (–SO₂–C₆H₄–CH₃)

In organic chemistry, a toluenesulfonyl group (tosyl group, abbreviated Ts or Tos) is a univalent functional group with the chemical formula −SO2−C6H4−CH3. It consists of a tolyl group, −C6H4−CH3, joined to a sulfonyl group, −SO2, with the open valence on sulfur. This group is usually derived from the compound tosyl chloride, CH3C6H4SO2Cl (abbreviated TsCl), which forms esters and amides of toluenesulfonic acid, CH3C6H4SO2OH (abbreviated TsOH). The para orientation illustrated (p-toluenesulfonyl) is most common, and by convention tosyl without a prefix refers to the p-toluenesulfonyl group.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

The Pummerer rearrangement is an organic reaction whereby an alkyl sulfoxide rearranges to an α-acyloxy–thioether (monothioacetal-ester) in the presence of acetic anhydride.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Malononitrile</span> Organic compound with formula CH2(CN)2

Malononitrile is an organic compound nitrile with the formula CH2(CN)2. It is a colorless or white solid, although aged samples appear yellow or even brown. It is a widely used building block in organic synthesis.

<span class="mw-page-title-main">Phosphorus pentasulfide</span> Chemical compound

Phosphorus pentasulfide is the inorganic compound with the formula P2S5 (empirical) or P4S10 (molecular). This yellow solid is the one of two phosphorus sulfides of commercial value. Samples often appear greenish-gray due to impurities. It is soluble in carbon disulfide but reacts with many other solvents such as alcohols, DMSO, and DMF.

<span class="mw-page-title-main">18-Crown-6</span> Chemical compound

18-Crown-6 is an organic compound with the formula [C2H4O]6 and the IUPAC name of 1,4,7,10,13,16-hexaoxacyclooctadecane. It is a white, hygroscopic crystalline solid with a low melting point. Like other crown ethers, 18-crown-6 functions as a ligand for some metal cations with a particular affinity for potassium cations (binding constant in methanol: 106 M−1). The point group of 18-crown-6 is S6. The dipole moment of 18-crown-6 is solvent- and temperature-dependent. Below 25 °C, the dipole moment of 18-crown-6 is 2.76 ± 0.06 D in cyclohexane and 2.73 ± 0.02 in benzene. The synthesis of the crown ethers led to the awarding of the Nobel Prize in Chemistry to Charles J. Pedersen.

<span class="mw-page-title-main">Trimethylsilyl chloride</span> Organosilicon compound with the formula (CH3)3SiCl

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound, with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

<span class="mw-page-title-main">Disulfur dichloride</span> Chemical compound

Disulfur dichloride is the inorganic compound of sulfur and chlorine with the formula S2Cl2. It is an amber oily liquid.

<span class="mw-page-title-main">Chlorosulfonyl isocyanate</span> Chemical compound

Chlorosulfonyl isocyanate is the chemical compound ClSO2NCO, known as CSI. This compound is a versatile reagent in organic synthesis.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Sodium tetrachloropalladate</span> Chemical compound

Sodium tetrachloropalladate is an inorganic compound with the chemical formula Na2PdCl4. This salt, and the analogous alkali metal salts of the form M2PdCl4, may be prepared simply by reacting palladium(II) chloride with the appropriate alkali metal chloride in aqueous solution. Palladium(II) chloride is insoluble in water, whereas the product dissolves:

<span class="mw-page-title-main">Selenium monochloride</span> Chemical compound

Selenium monochloride or diselenium dichloride is an inorganic compound with the formula Se2Cl2. Although a common name for the compound is selenium monochloride, reflecting its empirical formula, IUPAC does not recommend that name, instead preferring the more descriptive diselenium dichloride.

<span class="mw-page-title-main">Sulfenamide</span> Molecules of the form >N–S–

In organosulfur chemistry, sulfenamides are a class of organosulfur compounds characterized by the general formula R−S−N(−R)2, where the R groups are hydrogen, alkyl, or aryl. Sulfenamides have been used extensively in the vulcanization of rubber using sulfur. They are related to the oxidized compounds known as sulfinamides and sulfonamides.

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

In chemistry, dithiadiazoles are a family of heterocyclic compounds with the formula RCN2S2. Two isomers have been studied: the 1,2‑dithia-3,5‑diazoles, in which the sulfur atoms are bonded to each other across the ring from the carbon atom, and the 1,3‑dithia-2,5‑diazoles, in which nitrogen and sulfur atoms alternate around the ring. In both cases, the neutral species are radicals that are of interest as examples of paramagnetic heterocycles. They have also attracted interest because of the tendency of the neutral species to form linear chain compounds, a theme in molecular electronics.

<span class="mw-page-title-main">Chloroacetonitrile</span> Chemical compound

Chloroacetonitrile is the organic compound with the formula ClCH2CN. A colorless liquid, it is derived from acetonitrile (CH3CN) by replacement of one H with Cl. In practice, it is produced by dehydration of chloroacetamide. The compound is an alkylating agent, and as such is handled cautiously.

<span class="mw-page-title-main">TCFH</span> Chemical compound

TCFH is an electrophilic amidine reagent used to activate a number of functional groups for reaction with nucleophilies. TCFH is most commonly used to activate carboxylic acids for reaction with amines in the context of amide bond formation and peptide synthesis.

References

  1. 1 2 Rees, Charles W. (1992). "Polysulfur-Nitrogen Heterocyclic Chemistry". Journal of Heterocyclic Chemistry. 29 (3): 639–651. doi:10.1002/jhet.5570290306.
  2. Foucourt, Alicia; Chosson, Elizabeth; Besson, Thierry (2009). "4,5-Dichloro-1,2,3-dithiazol-1-ium Chloride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn01113. ISBN   978-0471936237.
  3. Cuadro, Ana M.; Alvarez-Buila, Julio (1994). "4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's Salt): Reactions with N-Nucleophiles". Tetrahedron. 50 (33): 10037–10046. doi:10.1016/S0040-4020(01)89619-8. hdl: 10017/3581 .
  4. Appel, Rolf; Janssen, Heinrich; Siray, Mustafa; Knoch, Falk (1985). "Synthese und Reaktionen des 4,5-Dichlor-1,2,3-dithiazolium-chlorids". Chemische Berichte. 118 (4): 1632–1643. doi:10.1002/cber.19851180430.