5DX

Last updated

The 5DX was an automated X-ray inspection robot, which belonged to the set of automated test equipment robots and industrial robots utilizing machine vision. The 5DX was manufactured by Hewlett Packard, then later Agilent Technologies when HP was split into Hewlett Packard and Agilent Technologies in 1999. The 5DX performed a non-destructive structural test using X-ray laminography (tomography) to take 3D images of an assembled printed circuit board using 8-bit grayscale to indicate solder thickness. It was used in the assembled printed circuit board (PCB) electronics manufacturing industry to provide process feedback to a surface mount technology assembly line, as well as defect capture.

Contents

The 5DX was one of several tools used by many companies in the electronics manufacturing services sector to provide a means of inspecting both the visible and hidden solder connections between the printed circuit boards and components attached to those printed circuit boards. These solder connections (also known as solder joints) are referred to as PCB interconnects.

Principle of operation

The 5DX system used classical laminography to create an x-ray image “slice”, or image plane that will be distinct from other image planes on the object to be imaged. A slice will remove obstructions above or below the plane of focus so that only the regions of interest remain. X-Ray systems that use methods such as laminography ( or the now more commonly used tomography ) are marketed as “3D” x-ray systems. X-Ray systems that do not use these methods and only produce a transmissive shadow image are marketed as “2D” systems.

The 5DX used a gantry robot to move the assembled printed circuit board underneath an X-ray source to be able to image the components' joints that require inspection. The positioning of board was guided with the use of Computer Aided Design (CAD) data, which represented the outer layers of a printed circuit board's electrical design.

Classical laminography is based on a relative motion of the x-ray source, the detector, and the object. [1] The x-ray source and the detector are moved synchronously in circles 180 degrees out of phase with each other as shown in the figure.

An illustration of the imaging method used for creating an image slice with laminography. Xray laminography illustration.PNG
An illustration of the imaging method used for creating an image slice with laminography.

Due to that correlated motion, the location of the projected images of points within the object moves also. Only points from a particular slice, the so-called focal plane, will be always projected at the same location onto the detector and therefore imaged sharply. Object structures above and below the focal plane will move as the rotation occurs. Because of that, they are not imaged sharply and they will blur to a grey background image. This requires precise height data, created by laser mapping the surface of the board. The focal plane is approximately .003 inches (.076 mm) deep.

Rotational laminography requires a complex system to produce the rotating x-ray source, rotate the image detector and maintain synchronization between source and detector. In addition, the laminography systems require a system to map the surface of the object to be imaged. Product to be imaged is rarely perfectly flat. [2] The 5DX system used a laser mapping system to measure bow and twist so that the effects could be compensated for in the imaging process. In the 5DX system the rotating x-ray source is produced by scanning a high energy electron beam around an x-ray producing target integral to the x-ray tube. The rotating detector is implemented by rotating an x-ray sensitive screen mechanically and projecting the image into a high sensitivity digital camera. Aside from the electro-mechanical complexity, the main disadvantages of classical laminography are the background intensity that reduces the contrast resolution and the fact that in each measurement only one slice is imaged sharply. All other slices have to be inspected consecutively by displacing the object vertically. Classical laminography has been replaced by computed tomography (CT) or computed laminography in more modern automated x-ray systems.

History

Agilent Technologies (now Keysight Technologies), the OEM of the 5DX and follow on product, the X6000, exited the automated inspection market in March 2009. Both the 5DX and the X6000 were discontinued at that time.

Even though the systems have been out of production for several years, a significant number remain in use.

Product Revision History

Related Research Articles

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan, formerly called computed axial tomography scan, is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists. CT scanners use a rotating X-ray tube and a row of detectors placed in a gantry to measure X-ray attenuations by different tissues inside the body. The multiple X-ray measurements taken from different angles are then processed on a computer using tomographic reconstruction algorithms to produce tomographic (cross-sectional) images of a body. CT scans can be used in patients with metallic implants or pacemakers, for whom magnetic resonance imaging (MRI) is contraindicated.

<span class="mw-page-title-main">Radiography</span> Imaging technique using radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical and industrial radiography. Similar techniques are used in airport security,. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and it is projected towards the object. A certain amount of the X-rays or other radiation are absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two-dimensional images by this technique is called projectional radiography. In computed tomography, an X-ray source and its associated detectors rotate around the subject, which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding the attenuation of these beams is collated and subjected to computation to generate two-dimensional images on three planes which can be further processed to produce a three-dimensional image.

<span class="mw-page-title-main">Agilent Technologies</span> American technology company

Agilent Technologies, Inc. is an American global company headquartered in Santa Clara, California, that provides instruments, software, services, and consumables for laboratories. Agilent was established in 1999 as a spin-off from Hewlett-Packard. The resulting IPO of Agilent stock was the largest in the history of Silicon Valley at the time. From 1999 to 2014, the company produced optics, semiconductors, EDA software and test and measurement equipment for electronics; that division was spun off to form Keysight. Since then, the company has continued to expand into pharmaceutical, diagnostics & clinical, and academia & government (research) markets.

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

<span class="mw-page-title-main">Electron beam computed tomography</span> Medical diagnostic technology

Electron beam computed tomography (EBCT) is a fifth generation computed tomography (CT) scanner in which the X-ray tube is not mechanically spun in order to rotate the source of X-ray photons. This different design was explicitly developed to better image heart structures that never stop moving, performing a complete cycle of movement with each heartbeat.

<span class="mw-page-title-main">X-ray microtomography</span> X-ray 3D imaging method

In radiography, X-ray microtomography uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model without destroying the original object. It is similar to tomography and X-ray computed tomography. The prefix micro- is used to indicate that the pixel sizes of the cross-sections are in the micrometre range. These pixel sizes have also resulted in creation of its synonyms high-resolution X-ray tomography, micro-computed tomography, and similar terms. Sometimes the terms high-resolution computed tomography (HRCT) and micro-CT are differentiated, but in other cases the term high-resolution micro-CT is used. Virtually all tomography today is computed tomography.

<span class="mw-page-title-main">Cone beam reconstruction</span>

In microtomography X-ray scanners, cone beam reconstruction is one of two common scanning methods, the other being Fan beam reconstruction.

<span class="mw-page-title-main">Fiducial marker</span> Reference point inserted in an image

A fiducial marker or fiducial is an object placed in the field of view of an image for use as a point of reference or a measure. It may be either something placed into or on the imaging subject, or a mark or set of marks in the reticle of an optical instrument.

The CTX is an explosive detection device, a family of x-ray devices developed by InVision Technologies in 1990 that uses CAT scans and sophisticated image processing software to automatically screen checked baggage for explosives.

<span class="mw-page-title-main">Automated optical inspection</span> System for visual inspection of printed circuit boards by a computerized system

Automated optical inspection (AOI) is an automated visual inspection of printed circuit board (PCB) manufacture where a camera autonomously scans the device under test for both catastrophic failure and quality defects. It is commonly used in the manufacturing process because it is a non-contact test method. It is implemented at many stages through the manufacturing process including bare board inspection, solder paste inspection (SPI), pre-reflow and post-re-flow as well as other stages.

Bernard Marshall Gordon is an American engineer, inventor, entrepreneur, and philanthropist. He is considered "the father of high-speed analog-to-digital conversion".

Terahertz tomography is a class of tomography where sectional imaging is done by terahertz radiation. Terahertz radiation is electromagnetic radiation with a frequency between 0.1 and 10 THz; it falls between radio waves and light waves on the spectrum; it encompasses portions of the millimeter waves and infrared wavelengths. Because of its high frequency and short wavelength, terahertz wave has a high signal-to-noise ratio in the time domain spectrum. Tomography using terahertz radiation can image samples that are opaque in the visible and near-infrared regions of the spectrum. Terahertz wave three-dimensional (3D) imaging technology has developed rapidly since its first successful application in 1997, and a series of new 3D imaging technologies have been proposed successively.

Automated X-ray inspection (AXI) is a technology based on the same principles as automated optical inspection (AOI). It uses X-rays as its source, instead of visible light, to automatically inspect features, which are typically hidden from view.

<span class="mw-page-title-main">Tomosynthesis</span> Medical imaging technique

Tomosynthesis, also digital tomosynthesis (DTS), is a method for performing high-resolution limited-angle tomography at radiation dose levels comparable with projectional radiography. It has been studied for a variety of clinical applications, including vascular imaging, dental imaging, orthopedic imaging, mammographic imaging, musculoskeletal imaging, and chest imaging.

<span class="mw-page-title-main">Viscom</span>

Viscom AG is a manufacturer of inspection technologies, in particular for automatic optical inspection (AOI) and X-ray inspection, with headquarters in Hanover, Germany, used in automotive electronics, entertainment electronics, telecommunications and industrial electronics.

John Fitzallen Moore was an American physicist, the son of authors Virginia Moore and Louis Untermeyer. His last name was legally changed after his parents' divorce. His work in military electronics, communications, and spectroscopy culminated in medical electronics and x-ray products with the founding of the company Bio-Imaging Research.

<span class="mw-page-title-main">Industrial computed tomography</span> Computer-aided tomographic process

Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT scanning has been used in many areas of industry for internal inspection of components. Some of the key uses for industrial CT scanning have been flaw detection, failure analysis, metrology, assembly analysis and reverse engineering applications. Just as in medical imaging, industrial imaging includes both nontomographic radiography and computed tomographic radiography.

Keysight Technologies, Inc. is an American company that manufactures electronics test and measurement equipment and software. The name is a blend of key and insight. The company was formed as a spin-off of Agilent Technologies, which inherited and rebranded the test and measurement product lines developed and produced from the late 1960s to the turn of the millennium by Hewlett-Packard's Test & Measurement division.

<span class="mw-page-title-main">Operation of computed tomography</span> Medical diagnostic method

X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.

<span class="mw-page-title-main">History of computed tomography</span> History of CT scanning technology

The history of X-ray computed tomography (CT) dates back to at least 1917 with the mathematical theory of the Radon transform. In the early 1900s an Italian radiologist named Alessandro Vallebona invented tomography which used radiographic film to see a single slice of the body. It was not widely used until the 1930s, when Dr Bernard George Ziedses des Plantes developed a practical method for implementing the technique, known as focal plane tomography. It relies on mechanical movement of the X-ray beam source and capture film in unison to ensure that the plane of interest remains in focus with objects falling outside of the plane being examined blurring out.

References

  1. Digital computed Laminography and Tomosynthesis - Functional Principles and Industrial Applications; S. Gondrom, S. Schröpfer, FhG ITFP, Saarbrücken, D; International Symposium on Computerized Tomography for Industrial Applications and Image Processing in Radiology March, 15 - 17, 1999 Berlin, Germany
  2. IPC-A-600G, Acceptability of Printed Circuit Boards, Section 2.11 Flatness