ADI 3510

Last updated
ADI 3510
Supreme Federal Court of Brazil.jpg
Court Supreme Federal Court
Full case nameADI 3510 (Prosecutor General v. President of the Republic and National Congress)
DecidedMay 29, 2008 (2008-05-29)
Citation(s) Supreme Court of Brazil approved stem cell research using excess in vitro fertilized embryos in the country
Court membership
Judge(s) sittingPresident

Gilmar Mendes

Justices

Case opinions
Decision byBritto
ConcurrenceMello, Lúcia, Gracie, Barbosa, Mello
DissentDireito, Lewandowski, Grau, Peluso, Mendes
Keywords

ADI 3510 (April 29, 2008), is a landmark Brazil Supreme Court case. The minister relator Carlos Ayres Britto voted in favor of embryonic stem cell research (Biosecurity Law). [1]

Contents

High Court decision

Supreme Court of Brazil. STF Plenario.jpg
Supreme Court of Brazil.

Judiciary representation

Supreme Court members MinistersYesNo
Ayres Britto 11
Cármen Lúcia 11
Celso de Mello 11
Cezar Peluso 11
Ellen Gracie 11
Eros Grau11
Gilmar Mendes 11
Joaquim Barbosa 11
Marco Aurélio Mello 11
Menezes Direito 11
Ricardo Lewandowski 11
Total1156

Legislative representation

Prosecutor General of the Republic ProsecutorYesNo
Antônio Fernando de Souza11
Total110

Executive representation

Attorney General of the Union Solicitor GeneralYesNo
Dias Toffoli 11
Total101

See also

Related Research Articles

<span class="mw-page-title-main">Human cloning</span> Creation of a genetically identical copy of a human

Human cloning is the creation of a genetically identical copy of a human. The term is generally used to refer to artificial human cloning, which is the reproduction of human cells and tissue. It does not refer to the natural conception and delivery of identical twins. The possibilities of human cloning have raised controversies. These ethical concerns have prompted several nations to pass laws regarding human cloning.

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Somatic cell nuclear transfer</span> Method of creating a cloned embryo by replacing the egg nucleus with a body cell nucleus

In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an denucleated oocyte and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. In 1996, Dolly the sheep became famous for being the first successful case of the reproductive cloning of a mammal. In January 2018, a team of scientists in Shanghai announced the successful cloning of two female crab-eating macaques from foetal nuclei.

<span class="mw-page-title-main">Embryonic stem cell</span> Pluripotent stem cell of the inner cell mass of the blastocyst

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.

<span class="mw-page-title-main">Adult stem cell</span> Multipotent stem cell in the adult body

Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells, they can be found in juvenile, adult animals, and humans, unlike embryonic stem cells.

<span class="mw-page-title-main">2004 California Proposition 71</span> California law

Proposition 71 of 2004 is a law enacted by California voters to support stem cell research in the state. It was proposed by means of the initiative process and approved in the 2004 state elections on November 2. The Act amended both the Constitution of California and the Health and Safety Code.

The stem cell controversy is the consideration of the ethics of research involving the development and use of human embryos. Most commonly, this controversy focuses on embryonic stem cells. Not all stem cell research involves human embryos. For example, adult stem cells, amniotic stem cells, and induced pluripotent stem cells do not involve creating, using, or destroying human embryos, and thus are minimally, if at all, controversial. Many less controversial sources of acquiring stem cells include using cells from the umbilical cord, breast milk, and bone marrow, which are not pluripotent.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition. As of 2016, the only established therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone-marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease.

<span class="mw-page-title-main">Progenitor cell</span> Cell that differentiates into one or a few cell types

A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only differentiate into their "target" cell type. The most important difference between stem cells and progenitor cells is that stem cells can replicate indefinitely, whereas progenitor cells can divide only a limited number of times. Controversy about the exact definition remains and the concept is still evolving.

Stem cell research policy varies significantly throughout the world. There are overlapping jurisdictions of international organizations, nations, and states or provinces. Some government policies determine what is allowed versus prohibited, whereas others outline what research can be publicly financed. Of course, all practices not prohibited are implicitly permitted. Some organizations have issued recommended guidelines for how stem cell research is to be conducted.

<span class="mw-page-title-main">Elaine Fuchs</span> American biologist

Elaine V. Fuchs is an American cell biologist famous for her work on the biology and molecular mechanisms of mammalian skin and skin diseases, who helped lead the modernization of dermatology. Fuchs pioneered reverse genetics approaches, which assess protein function first and then assess its role in development and disease. In particular, Fuchs researches skin stem cells and their production of hair and skin. She is an investigator at the Howard Hughes Medical Institute and the Rebecca C. Lancefield Professor of Mammalian Cell Biology and Development at The Rockefeller University.

Stem Cell Research Enhancement Act was the name of two similar bills that both passed through the United States House of Representatives and Senate, but were both vetoed by President George W. Bush and were not enacted into law.

<span class="mw-page-title-main">Induced pluripotent stem cell</span> Pluripotent stem cell generated directly from a somatic cell

Induced pluripotent stem cells are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes, collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells. Shinya Yamanaka was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."

<span class="mw-page-title-main">Shinya Yamanaka</span> Japanese stem cell researcher

Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He is the former director of Center for iPS Cell Research and Application and a professor at the Institute for Frontier Medical Sciences at Kyoto University; as a senior investigator at the UCSF-affiliated Gladstone Institutes in San Francisco, California; and as a professor of anatomy at University of California, San Francisco (UCSF). Yamanaka is also a past president of the International Society for Stem Cell Research (ISSCR).

Stem cell laws are the law rules, and policy governance concerning the sources, research, and uses in treatment of stem cells in humans. These laws have been the source of much controversy and vary significantly by country. In the European Union, stem cell research using the human embryo is permitted in Sweden, Spain, Finland, Belgium, Greece, Britain, Denmark and the Netherlands; however, it is illegal in Germany, Austria, Ireland, Italy, and Portugal. The issue has similarly divided the United States, with several states enforcing a complete ban and others giving support. Elsewhere, Japan, India, Iran, Israel, South Korea, China, and Australia are supportive. However, New Zealand, most of Africa, and most of South America are restrictive.

Stem cell laws and policy in the United States have had a complicated legal and political history.

The Wellcome – MRC Cambridge Stem Cell Institute at the University of Cambridge is a research centre for the nature and potential medical uses of stem cells. It is located on the Cambridge Biomedical Campus in Cambridge, England.

<span class="mw-page-title-main">Cell potency</span> Ability of a cell to differentiate into other cell types

Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency.

<span class="mw-page-title-main">Mesenchymal stem cell</span> Multipotent, non-hematopoietic adult stem cells present in multiple tissues

Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes and adipocytes.

<span class="mw-page-title-main">Patricia Pranke</span> Brazilian stem cell researcher (born 1967)

Patricia Helena Lucas Pranke is a Brazilian stem cell researcher at the Federal University of Rio Grande do Sul. Between 2003 and 2005, Pranke was one of two scientists who helped the Federal Government of Brazil write the National Biosafety Law, regulating research on human embryonic stem cells in Brazil.

References

  1. "Abortion of Anencephalics in Brazil" (in Portuguese). Archived from the original on 2015-11-17. Retrieved 2012-04-24.