ALK positive lung cancer

Last updated
ALK positive lung cancer
ALK positive lung adenocarcinoma -- low mag.jpg
Micrograph showing ALK positive lung adenocarcinoma. H&E stain.
Specialty Oncology

ALK positive lung cancer is a primary malignant lung tumor whose cells contain a characteristic abnormal configuration of DNA wherein, most frequently, the echinoderm microtubule-associated protein-like 4 ( EML4 ) gene is fused to the anaplastic lymphoma kinase (ALK) gene. Less frequently, there will be novel translocation partners for the ALK gene, in place of EML4. [1] This abnormal gene fusion leads to the production of a protein that appears, in many cases, to promote and maintain the malignant behavior of the cancer cells. [2]

Contents

The transforming EML4-ALK fusion gene was first reported in non-small cell lung carcinoma (NSCLC) in 2007. [3]

Signs and symptoms

The signs and symptoms of this cancer include

Diagnosis

Classification

Most lung carcinomas containing the ALK gene fusion are adenocarcinomas.

Some studies suggest that the papillary adenocarcinoma and the signet ring cell adenocarcinoma [5] variants are more likely to carry this fused gene than other histological variants.

The median age at diagnosis is around 50 years and the majority are female. [4] [6]

Screening

Micrograph showing an ALK positive adenocarcinoma of the lung. ALK immunostain. ALK positive lung adenocarcinoma - ALK IHC -- high mag.jpg
Micrograph showing an ALK positive adenocarcinoma of the lung. ALK immunostain.

Screening for ALK positive lung cancer is now a standard of care and strongly recommended by the American Society of Clinical Oncology [7] as well as the European Society of Medical Oncology. [8] Screening in the United States of most often done with immunohistochemistry (IHC) staining or FISH. [7]

Treatment

Crizotinib is a targeted therapy (FDA approved in 2011), manufactured by Pfizer and marketed under the brand name Xalkori and Crizalk that targets the EML4/ALK fusion gene. [9]

Ceritinib is a second generation targeted therapy (FDA approved in 2014), manufactured by Novartis and sold under the brand name Zykadia that also targets the EML4 fusion gene. When compared to Crizotinib, early studies showed Ceritinib and other second generation ALK inhibitors demonstrated superior central nervous system (CNS) penetration leading to superior anti-tumor response in patients with metastatic disease to the CNS. [10]

Alectinib another second generation targeted therapy and was approved (for this) in Japan in 2014 [11] and by US FDA in 2015., [12] manufactured by Genentech and marketed under the brand name Alecensa.

Brigatinib a second generation targeted therapy (FDA approved in 2017), manufactured by Takeda and is marketed under the brand name Alunbrig.

Ensartinib is a second generation targeted therapy (trial drug X-396), manufactured by XCovery. [13]

Lorlatinib is a third generation targeted therapy (FDA approved in 2018), manufactured by Pfizer. [14]

NVL-655 is a fourth generation targeted therapy (currently in clinical trials), developed by Nuvalent. [14] [15]

Although treatment with immune checkpoint inhibitors has proved effective with some types of non-small cell lung cancer, it seems to be generally ineffective with ALK positive non-small cell lung cancer. [16]

Prognosis

Treatment with crizotinib achieves 60% response rate. [17] However, crizotinib showed no improvement on overall survival compared to chemotherapy. [18] This may be due to the fact that there was a 70% crossover rate to crizotinib in patients treated initially with chemotherapy. [19] Also, patients who tested negative for EML4/ALK fusion had a response rate to crizotinib of up to 35%. [20]

According to patient advocacy group ALK Positive, a study in December 2018 found that the median survival for people with stage 4 (IV) ALK-positive lung cancer was 6.8 years with the right care. [4]

Epidemiology

EML4-ALK gene fusions occur almost exclusively in carcinomas arising in non-smokers. [21] [22] About 4% of non-small-cell lung carcinomas involve an EML4-ALK tyrosine kinase fusion gene. [23] 46% of lung adenocarcinomas involve the fusion gene. [17]

EML4-ALK mutation rarely occurs in combination with K-RAS or EGFR mutations.

Related Research Articles

<span class="mw-page-title-main">Gefitinib</span> Medication used for cancer

Gefitinib, sold under the brand name Iressa, is a medication used for certain breast, lung and other cancers. Gefitinib is an EGFR inhibitor, like erlotinib, which interrupts signaling through the epidermal growth factor receptor (EGFR) in target cells. Therefore, it is only effective in cancers with mutated and overactive EGFR, but resistances to gefitinib can arise through other mutations. It is marketed by AstraZeneca and Teva.

<span class="mw-page-title-main">Non-small-cell lung cancer</span> Any type of epithelial lung cancer other than small-cell lung carcinoma

Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitive to chemotherapy, compared to small-cell carcinoma. When possible, they are primarily treated by surgical resection with curative intent, although chemotherapy has been used increasingly both preoperatively and postoperatively.

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

<span class="mw-page-title-main">ROS1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene tyrosine-protein kinase ROS is an enzyme that in humans is encoded by the ROS1 gene.

Treatment of lung cancer refers to the use of medical therapies, such as surgery, radiation, chemotherapy, immunotherapy, percutaneous ablation, and palliative care, alone or in combination, in an attempt to cure or lessen the adverse impact of malignant neoplasms originating in lung tissue.

Targeted therapy of lung cancer refers to using agents specifically designed to selectively target molecular pathways responsible for, or that substantially drive, the malignant phenotype of lung cancer cells, and as a consequence of this (relative) selectivity, cause fewer toxic effects on normal cells.

HOHMS is the medical acronym for "Higher-Order HistoMolecular Stratification", a term and concept which was first applied to lung cancer research and treatment theory.

<span class="mw-page-title-main">Adenocarcinoma of the lung</span> Medical condition

Adenocarcinoma of the lung is the most common type of lung cancer, and like other forms of lung cancer, it is characterized by distinct cellular and molecular features. It is classified as one of several non-small cell lung cancers (NSCLC), to distinguish it from small cell lung cancer which has a different behavior and prognosis. Lung adenocarcinoma is further classified into several subtypes and variants. The signs and symptoms of this specific type of lung cancer are similar to other forms of lung cancer, and patients most commonly complain of persistent cough and shortness of breath.

<span class="mw-page-title-main">Crizotinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which is involved in the oncogenesis of a number of other histological forms of malignant neoplasms. It also acts as an ALK and ROS1 inhibitor.

<span class="mw-page-title-main">ALK inhibitor</span>

ALK inhibitors are anti-cancer drugs that act on tumours with variations of anaplastic lymphoma kinase (ALK) such as an EML4-ALK translocation. They fall under the category of tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of tumour cells. All the current approved ALK inhibitors function by binding to the ATP pocket of the abnormal ALK protein, blocking its access to energy and deactivating it. A majority of ALK-rearranged NSCLC harbour the EML4-ALK fusion, although as of 2020, over 92 fusion partners have been discovered in ALK+ NSCLC. For each fusion partner, there can be several fusion variants depending on the position the two genes were fused at, and this may have implications on the response of the tumour and prognosis of the patient.

<span class="mw-page-title-main">Brigatinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Brigatinib, sold under the brand name Alunbrig among others, is a small-molecule targeted cancer therapy being developed by Ariad Pharmaceuticals, Inc. Brigatinib acts as both an anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) inhibitor.

<span class="mw-page-title-main">Inflammatory myofibroblastic tumour</span> Medical condition

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm of the mesodermal cells that form the connective tissues which support virtually all of the organs and tissues of the body. IMT was formerly termed inflammatory pseudotumor. Currently, however, inflammatory pseudotumor designates a large and heterogeneous group of soft tissue tumors that includes inflammatory myofibroblastic tumor, plasma cell granuloma, xanthomatous pseudotumor, solitary mast cell granuloma, inflammatory fibrosarcoma, pseudosarcomatous myofibroblastic proliferation, myofibroblastoma, inflammatory myofibrohistiocytic proliferation, and other tumors that develop from connective tissue cells. Inflammatory pseudotumour is a generic term applied to various neoplastic and non-neoplastic tissue lesions which share a common microscopic appearance consisting of spindle cells and a prominent presence of the white blood cells that populate chronic or, less commonly, acute inflamed tissues.

Targeted molecular therapy for neuroblastoma involves treatment aimed at molecular targets that have a unique expression in this form of cancer. Neuroblastoma, the second most common pediatric malignant tumor, often involves treatment through intensive chemotherapy. A number of molecular targets have been identified for the treatment of high-risk forms of this disease. Aiming treatment in this way provides a more selective way to treat the disease, decreasing the risk for toxicities that are associated with the typical treatment regimen. Treatment using these targets can supplement or replace some of the intensive chemotherapy that is used for neuroblastoma. These molecular targets of this disease include GD2, ALK, and CD133. GD2 is a target of immunotherapy, and is the most fully developed of these treatment methods, but is also associated with toxicities. ALK has more recently been discovered, and drugs in development for this target are proving to be successful in neuroblastoma treatment. The role of CD133 in neuroblastoma has also been more recently discovered and is an effective target for treatment of this disease.

<span class="mw-page-title-main">Ceritinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Ceritinib is a prescription-only drug used for the treatment of non-small cell lung cancer (NSCLC). It was developed by Novartis and received FDA approval for use in April 2014.

<span class="mw-page-title-main">Osimertinib</span> Chemical compound, used as a medication to treat lung cancer

Osimertinib, sold under the brand name Tagrisso, is a medication used to treat non-small-cell lung carcinomas with specific mutations. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

<span class="mw-page-title-main">Alectinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Alectinib (INN), sold under the brand name Alecensa, is an anticancer medication that is used to treat non-small-cell lung cancer (NSCLC). It blocks the activity of anaplastic lymphoma kinase (ALK). It is taken by mouth. It was developed by Chugai Pharmaceutical Co. Japan, which is part of the Hoffmann-La Roche group.

<span class="mw-page-title-main">Entrectinib</span> TKI inhibitor used for cancer treatment

Entrectinib, sold under the brand name Rozlytrek, is an anti-cancer medication used to treat ROS1-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. It is a selective tyrosine kinase inhibitor (TKI), of the tropomyosin receptor kinases (TRK) A, B and C, C-ros oncogene 1 (ROS1) and anaplastic lymphoma kinase (ALK).

<span class="mw-page-title-main">Lorlatinib</span> Kinase inhibitor for treatment of non-small-cell lung cancer

Lorlatinib, sold under the brand name Lorbrena in the United States, Canada, and Japan, and Lorviqua in the European Union, is an anti-cancer medication used for the treatment of non-small cell lung cancer. It is an orally administered inhibitor of anaplastic lymphoma kinase (ALK) and C-ros oncogene 1 (ROS1), two enzymes that play a role in the development of cancer. It was developed by Pfizer.

<span class="mw-page-title-main">Selpercatinib</span> Chemical compound

Selpercatinib, sold under the brand name Retevmo among others, is a medication for the treatment of cancers in people whose tumors have an alteration in a specific gene. It is taken by mouth.

RET inhibitors are targeted therapies that act on tumors with activating alterations in the RET proto-oncogene, such as point mutations or fusions. They fall under the category of the tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of cancer cells. Existing molecules fall in two main categories: the older multikinase inhibitors and the more recent selective inhibitors. Although RET alterations are found at low frequency in a broad range of tumors, the three main indications for RET inhibitors today are non-small cell lung cancer, medullary thyroid cancer and papillary thyroid cancer. As of 2020, up to 48 fusion partners have been catalogued in NSCLC rearrangements, with KIF5B and CCDC6 being the most prevalent. At least 10 different fusion variants have been described for KIF5B-RET, each with different breakpoints within the partner gene, but unclear clinical impact as of 2018.

References

  1. Iyevleva, Aglaya G.; Raskin, Grigory A.; Tiurin, Vladislav I.; Sokolenko, Anna P.; Mitiushkina, Natalia V.; Aleksakhina, Svetlana N.; Gariullina, Aigul R.; Strelkova, Tatiana N.; Merkulov, Valery O.; Ivantsov, Alexandr O.; Kuligina, Ekatherina Sh.; Pozharisski, Kazimir M.; Togo, Alexandr V.; Imyanitov, Evgeny N. (28 June 2015). "Novel ALK fusion partners in lung cancer". Cancer Letters. 362 (1): 116–121. doi:10.1016/j.canlet.2015.03.028. PMID   25813404 via Science Direct.
  2. Soda M, Choi YL, Enomoto M, et al. (August 2007). "Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer". Nature. 448 (7153): 561–6. Bibcode:2007Natur.448..561S. doi:10.1038/nature05945. PMID   17625570. S2CID   2172543.
  3. Sasaki T, Rodig SJ, Chirieac LR, Jänne PA (July 2010). "The biology and treatment of EML4-ALK non-small cell lung cancer". Eur. J. Cancer. 46 (10): 1773–80. doi:10.1016/j.ejca.2010.04.002. PMC   2888755 . PMID   20418096.
  4. 1 2 3 ALK Positive (5 February 2023). "What is ALK-Positive lung cancer?". ALK Positive. Archived from the original on 7 October 2020. Retrieved 5 February 2023.
  5. Koh Y, Kim DW, Kim TM, et al. (May 2011). "Clinicopathologic characteristics and outcomes of patients with anaplastic lymphoma kinase-positive advanced pulmonary adenocarcinoma: suggestion for an effective screening strategy for these tumors". J Thorac Oncol. 6 (5): 905–12. doi: 10.1097/JTO.0b013e3182111461 . PMID   21358343. S2CID   38377715.
  6. ALK Positive UK (5 February 2023). "Facts". ALK Positive UK. Archived from the original on 17 January 2023. Retrieved 5 February 2023.
  7. 1 2 Kalemkerian, Gregory P.; Narula, Navneet; Kennedy, Erin B. (May 2018). "Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement Summary of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update". Journal of Oncology Practice. 14 (5): 323–327. doi:10.1200/JOP.18.00035. ISSN   1935-469X. PMID   29589987.
  8. Hendriks, L. E.; Kerr, K. M.; Menis, J.; Mok, T. S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E. F.; Solomon, B. J.; Veronesi, G.; Reck, M.; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org (April 2023). "Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up". Annals of Oncology. 34 (4): 339–357. doi:10.1016/j.annonc.2022.12.009. hdl: 1887/3750398 . ISSN   1569-8041. PMID   36872130.
  9. Kazandjian, Dickran; Blumenthal, Gideon M.; Chen, Huan-Yu; He, Kun; Patel, Mona; Justice, Robert; Keegan, Patricia; Pazdur, Richard (2014-08-28). "FDA Approval Summary: Crizotinib for the Treatment of Metastatic Non-Small Cell Lung Cancer With Anaplastic Lymphoma Kinase Rearrangements". The Oncologist. 19 (10). Oxford University Press (OUP): e5–e11. doi:10.1634/theoncologist.2014-0241. ISSN   1083-7159. PMC   4201002 .
  10. Chow, Laura Q. M.; Barlesi, Fabrice; Bertino, Erin M.; van den Bent, Martin J.; Wakelee, Heather A.; Wen, Patrick Y.; Chiu, Chao-Hua; Orlov, Sergey; Chiari, Rita; Majem, Margarita; McKeage, Mark; Yu, Chong-Jen; Garrido, Pilar; Hurtado, Felipe K.; Arratia, Pilar Cazorla (2022-06-13). "ASCEND-7: Efficacy and Safety of Ceritinib Treatment in Patients with ALK-Positive Non-Small Cell Lung Cancer Metastatic to the Brain and/or Leptomeninges". Clinical Cancer Research. 28 (12): 2506–2516. doi:10.1158/1078-0432.CCR-21-1838. ISSN   1557-3265. PMID   35091443.
  11. "Japan becomes first country to approve Roche's alectinib for people with a specific form of advanced lung cancer". Archived from the original on 2018-02-15. Retrieved 2016-02-11.
  12. New Oral Therapy To Treat ALK-Positive Lung Cancer. Dec 2015
  13. Xcovery (5 February 2023). "Ensartinib". Xcovery. Archived from the original on 3 December 2022. Retrieved 5 February 2023.
  14. 1 2 Ou, Sai-Hong Ignatius; Nagasaka, Misako; Brazel, Danielle; Hou, Yujie; Zhu, Viola W. (November 2021). "Will the clinical development of 4th-generation "double mutant active" ALK TKIs (TPX-0131 and NVL-655) change the future treatment paradigm of ALK+ NSCLC?". Translational Oncology. 14 (11): 1–9. doi: 10.1016/j.tranon.2021.101191 . PMC   8353359 . PMID   34365220.
  15. Nuvalent Pipeline (5 February 2023). "Nuvalent Pipeline". Nuvalent. Archived from the original on 8 December 2022. Retrieved 5 February 2023.
  16. Jahanzeb, Mohammad; Lin, Huamao M; Pan, Xiaoyun; Yin, Yu; Baumann, Pia; Langer, Corey J (17 September 2020). "Immunotherapy Treatment Patterns and Outcomes Among ALK-Positive Patients With Non-Small-Cell Lung Cancer". Clinical Lung Cancer. 22 (1): 49–57. doi: 10.1016/j.cllc.2020.08.003 . PMID   33250347. S2CID   224908622.
  17. 1 2 Bayliss, R; Choi, J (March 2016). "Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs". Cellular and Molecular Life Sciences. 73 (6): 1209–1224. doi:10.1007/s00018-015-2117-6. PMC   4761370 . PMID   26755435.
  18. Highlights of prescribing information FDA
  19. Solomon, Benjamin J.; Mok, Tony; Kim, Dong-Wan; Wu, Yi-Long; Nakagawa, Kazuhiko; Mekhail, Tarek; Felip, Enriqueta; Cappuzzo, Federico; Paolini, Jolanda; Usari, Tiziana; Iyer, Shrividya; Reisman, Arlene; Wilner, Keith D.; Tursi, Jennifer; Blackhall, Fiona; PROFILE 1014 Investigators (2014). "First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer". New England Journal of Medicine. 371 (23): 2167–2177. doi: 10.1056/NEJMoa1408440 . hdl: 2434/426878 . PMID   25470694.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  20. Summary of safety and effectiveness data FDA
  21. Shaw AT, Yeap BY, Mino-Kenudson M, et al. (September 2009). "Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor EML4-ALK". Journal of Clinical Oncology. 27 (26): 4247–4253. doi:10.1200/JCO.2009.22.6993. PMC   2744268 . PMID   19667264.
  22. Martelli MP, Sozzi G, Hernandez L, et al. (February 2009). "EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues". Am. J. Pathol. 174 (2): 661–70. doi:10.2353/ajpath.2009.080755. PMC   2630573 . PMID   19147828.
  23. Kumar, V; Abbas AK; Aster JC (2013). "Chapter 5". Robbins Basic Pathology (9th ed.). Elsevier Saunders. p. 212. ISBN   978-1-4377-1781-5.