Abhurite

Last updated
Abhurite
Abhurite - Shipwreck Hydra, South coast of Norway.jpg
Brownish tabular crystals of abhurite from Shipwreck "Hydra", South coast of Norway
General
CategoryHalide mineral
Formula
(repeating unit)
Sn21O6(OH)14Cl16
IMA symbol Abh [1]
Strunz classification 3.DA.30
Crystal system Trigonal
Crystal class Trapezohedral (32)
H-M symbol: (32)
Space group R32
Unit cell a = 10.0175 Å, c = 44.014 Å; Z=3
Identification
ColorColorless
Crystal habit Platy, thin crystals, cryptocrystalline crusts
Twinning On 0001
Cleavage None
Fracture Hackly
Tenacity Fragile
Mohs scale hardness2
Streak White
Diaphaneity Transparent
Specific gravity 4.42
Optical propertiesUniaxial (+)
Refractive index nω = 2.060 nε = 2.110
Birefringence δ = 0.050
References [2] [3] [4]

Abhurite is a mineral of tin, oxygen, hydrogen, and chlorine with the formula Sn21O6(OH)14Cl16 [4] [2] or Sn3O(OH)2Cl2. [5] It is named after its type locality, a shipwreck with tin ingots at Sharm Abhur, a cove near Jeddah in the Red Sea. Abhurite forms alongside other tin minerals like romarchite and cassiterite. [6]

Contents

Locality and formation

Abhurite is attributed for forming on tin materials when in contact with sea water. The mineral was described in 1977 from a shipwreck near Hidra Island, Norway, where it occurred on pewter plates. However, that report was not recognized by the International Mineralogical Association. [2] Along with Sharm Abhur and the shipwreck near Hidra Island, abhurite was found on tin ingots in the Uluburun shipwreck. On the ingots, it was found with other tin minerals like cassiterite and romarchite, and calcium carbonate minerals like calcite and aragonite. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Brass</span> Alloy of copper and zinc

Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic, and chemical properties, but copper typically has the larger proportion. In use since prehistoric times, it is a substitutional alloy: atoms of the two constituents may replace each other within the same crystal structure.

<span class="mw-page-title-main">Tin</span> Chemical element, symbol Sn and atomic number 50

Tin is a chemical element; it has symbol Sn and atomic number 50. A silvery-coloured metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, the so-called "tin cry" can be heard as a result of twinning in tin crystals; this trait is shared by indium, cadmium, zinc, and mercury in its solid state.

<span class="mw-page-title-main">Tourmaline</span> Cyclosilicate mineral group

Tourmaline is a crystalline silicate mineral group in which boron is compounded with elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a wide variety of colors.

<span class="mw-page-title-main">Lepidolite</span> Light micas with substantial lithium

Lepidolite is a lilac-gray or rose-colored member of the mica group of minerals with chemical formula K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2. It is the most abundant lithium-bearing mineral and is a secondary source of this metal. It is the major source of the alkali metal rubidium.

<span class="mw-page-title-main">Brucite</span> Magnesium hydroxide mineral

Brucite is the mineral form of magnesium hydroxide, with the chemical formula Mg(OH)2. It is a common alteration product of periclase in marble; a low-temperature hydrothermal vein mineral in metamorphosed limestones and chlorite schists; and formed during serpentinization of dunites. Brucite is often found in association with serpentine, calcite, aragonite, dolomite, magnesite, hydromagnesite, artinite, talc and chrysotile.

<span class="mw-page-title-main">Cassiterite</span> Tin oxide mineral, SnO₂

Cassiterite is a tin oxide mineral, SnO2. It is generally opaque, but it is translucent in thin crystals. Its luster and multiple crystal faces produce a desirable gem. Cassiterite was the chief tin ore throughout ancient history and remains the most important source of tin today.

<span class="mw-page-title-main">Uluburun shipwreck</span> 14th-century BCE Mediterranean shipwreck

The Uluburun Shipwreck is a Late Bronze Age shipwreck dated to the late 14th century BC, discovered close to the east shore of Uluburun, Turkey, in the Mediterranean Sea. The shipwreck was discovered in the summer of 1982 by Mehmed Çakir, a local sponge diver from Yalıkavak, a village near Bodrum.

<span class="mw-page-title-main">Zinnwaldite</span>

Zinnwaldite, KLiFeAl(AlSi3)O10(OH,F)2, potassium lithium iron aluminium silicate hydroxide fluoride is a silicate mineral in the mica group. The IMA status is as a series between siderophyllite (KFe2Al(Al2Si2)O10(F,OH)2) and polylithionite (KLi2AlSi4O10(F,OH)2) and not considered a valid mineral species.

<span class="mw-page-title-main">Chlorite group</span> Type of mineral

The chlorites are the group of phyllosilicate minerals common in low-grade metamorphic rocks and in altered igneous rocks. Greenschist, formed by metamorphism of basalt or other low-silica volcanic rock, typically contains significant amounts of chlorite.

<span class="mw-page-title-main">Stannite</span>

Stannite is a mineral, a sulfide of copper, iron, and tin, in the category of thiostannates.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6 - 7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Polycrase</span>

Polycrase or polycrase-(Y) is a black or brown metallic complex uranium yttrium oxide mineral with the chemical formula (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)2O6. It is amorphous. It has a Mohs hardness of 5 to 6 and a specific gravity of 5. It is radioactive due to its uranium content. It occurs in granitic pegmatites.

<span class="mw-page-title-main">Akaganeite</span> Iron(III) oxide-hydroxide mineral

Akaganeite, also written as the deprecated Akaganéite, is a chloride-containing iron(III) oxide-hydroxide mineral, formed by the weathering of pyrrhotite (Fe1−xS).

<span class="mw-page-title-main">Layered double hydroxides</span> Class of ionic solids characterized by a layered structure

Layered double hydroxides (LDH) are a class of ionic solids characterized by a layered structure with the generic layer sequence [AcB Z AcB]n, where c represents layers of metal cations, A and B are layers of hydroxide anions, and Z are layers of other anions and neutral molecules. Lateral offsets between the layers may result in longer repeating periods.

<span class="mw-page-title-main">Augelite</span> Aluminium phosphate mineral

Augelite is an aluminium phosphate mineral with formula: Al2(PO4)(OH)3. The shade varies from colorless to white, yellow or rose. Its crystal system is monoclinic.

<span class="mw-page-title-main">Russellite (mineral)</span> Bismuth tungstate mineral

Russellite is a bismuth tungstate mineral with the chemical formula Bi2WO6. It crystallizes in the orthorhombic crystal system. Russellite is yellow or yellow-green in color, with a Mohs hardness of 3+12.

<span class="mw-page-title-main">Oxhide ingot</span> Mediterranean Late Bronze Age metal slabs

Oxhide ingots are heavy metal slabs, usually of copper but sometimes of tin, produced and widely distributed during the Mediterranean Late Bronze Age (LBA). Their shape resembles the hide of an ox with a protruding handle in each of the ingot’s four corners. Early thought was that each ingot was equivalent to the value of one ox. However, the similarity in shape is simply a coincidence. The ingots' producers probably designed these protrusions to make the ingots easily transportable overland on the backs of pack animals. Complete or partial oxhide ingots have been discovered in Sardinia, Crete, Peloponnese, Cyprus, Cannatello in Sicily, Boğazköy in Turkey, Qantir in Egypt, and Sozopol in Bulgaria. Archaeologists have recovered many oxhide ingots from two shipwrecks off the coast of Turkey.

<span class="mw-page-title-main">Danalite</span> Iron beryllium silicate sulfide mineral

Danalite is an iron beryllium silicate sulfide mineral with formula: Fe2+4Be3(SiO4)3S.

<span class="mw-page-title-main">Plumbogummite</span> Alunite supergroup, phosphate mineral

Plumbogummite is a rare secondary lead phosphate mineral, belonging to the alunite supergroup of minerals, crandallite subgroup. Some other members of this subgroup are:

Chatkalite is a copper, iron, tin sulfide mineral with formula Cu6Fe2+Sn2S8. It crystallizes in the tetragonal crystal system and forms as rounded disseminations within tetrahedrite in quartz veins.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Mindat.org – Abhurite
  3. Webmineral.org – Abhurite
  4. 1 2 "Handbook of Mineralogy – Abhurite" (PDF). Archived from the original (PDF) on 2015-09-24. Retrieved 2013-01-26.
  5. Richard V. Gaines, H. Catherine W. Skinner, Eugene E. Foord, Brian Mason, and Abraham Rosenzweig: "Dana's new mineralogy", p. 401. John Wiley & Sons, 1997
  6. Memet, J. B. (2007). "The corrosion of metallic artefacts in seawater: descriptive analysis". In Dillmann, P.; Beranger, G.; Piccardo, P.; Matthiessen, H. (eds.). Corrosion of Metallic Heritage Artefacts: Investigation, Conservation and Prediction of Long Term Behaviour. Elsevier. pp. 152–169. doi:10.1533/9781845693015.152. ISBN   9781845693015.
  7. Vandiver, Pamela B.; Goodway, Martha; Mass, Jennifer L. (2002-01-01). Materials Issues in Art and Archaeology VI: Symposium Held November 26–30, 2001, Boston, Massachusetts, U.S.A. Materials Research Society. ISBN   9781558996489.