Accelerated testing of adhesives

Last updated

Accelerated testing of adhesives is used to predict long term performance of adhesive exposed to a variety of environmental factors. Adhesives are sometimes used as load bearing and sealing joints, which points great stress on them. In accelerated testing, factors like the temperature, moisture, vibrations, voltage, and UV light are greatly increased over a short period so long term predictions can be made about the effect of the aforementioned factors. [1] [2]

Contents

Adhesive failure prediction

Accelerated testing may induce reaction kinetics that is not applicable to the actual service environment of an adhesive, which could cause greater concern than is necessary for certain adhesives. High temperatures are often avoided because it frequently causes new reactions to occur. [1] [3]

Adhesive stability

Adhesives commonly react with oxygen at low temperatures, which leads to a slow break down of polymer chains. The breakdown of polymer chains is often undetectable until the adhesive has reached a critical point where the stability of remainder of the adhesive rapidly degrades. [1] High temperature accelerated testing often cannot be used to estimate stability in oxygen environments since high temperatures often lead to new reaction pathways that would not typically exist at the temperature the adhesives would be used. [1]

Moisture sensitivity accelerated tests involve either increased temperatures or increased surface area of a sample. The surface area of samples is increased by applying adhesives to a single surface rather than placing it between two surfaces and placing the sample in a water bath. [3]

Chemiluminescence

When polymers are oxidized, unstable alkyl radicals are formed which react further with oxygen to form peroxy bonds. The excitation and stabilization of the peroxy radical causes chemiluminescence. [1] The light produced by this reaction is typically low wavelength infrared light. The amount of light emitted is used to determine the oxidation rate of an adhesive.

Chemiluminescence (CL) light intensity can be measured at various isothermal oxidation cycles; however, the temperature need not be raised to high levels. Correlation of light intensity is made to oxidation process parameters such as Oxidation Induction Temperature (OIT). By obtaining measurements at different temperatures, an accelerated oxidation progression correlation can be established. The prediction of oxidation during service life can then be carried out. [1]

Related Research Articles

<span class="mw-page-title-main">Adhesive</span> Non-metallic material used to bond various materials together

Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation.

<span class="mw-page-title-main">Differential scanning calorimetry</span> Thermoanalytical technique

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<span class="mw-page-title-main">Chemiluminescence</span> Emission of light as a result of a chemical reaction

Chemiluminescence is the emission of light (luminescence) as the result of a chemical reaction, i.e. a chemical reaction results in a flash or glow of light. A standard example of chemiluminescence in the laboratory setting is the luminol test. Here, blood is indicated by luminescence upon contact with iron in hemoglobin. When chemiluminescence takes place in living organisms, the phenomenon is called bioluminescence. A light stick emits light by chemiluminescence.

<span class="mw-page-title-main">Polymer degradation</span> Alteration in the polymer properties under the influence of environmental factors

Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.

<span class="mw-page-title-main">Thermogravimetric analysis</span> Thermal method of analysis

Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions.

A hermetic seal is any type of sealing that makes a given object airtight. The term originally applied to airtight glass containers but, as technology advanced, it applied to a larger category of materials, including metals, rubber, and plastics. Hermetic seals are essential to the correct and safe functionality of many electronic and healthcare products. Used technically, it is stated in conjunction with a specific test method and conditions of use. Colloquially, the exact requirements of such a seal varies with the application.

<span class="mw-page-title-main">Organic peroxides</span> Organic compounds of the form R–O–O–R’

In organic chemistry, organic peroxides are organic compounds containing the peroxide functional group. If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. The O−O bond of peroxides easily breaks, producing free radicals of the form RO. Thus, organic peroxides are useful as initiators for some types of polymerization, such as the acrylic, unsaturated polyester, and vinyl ester resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can explosively combust. Organic peroxides, like their inorganic counterparts, are often powerful bleaching agents.

<span class="mw-page-title-main">Hot-melt adhesive</span> Glue applied by heating

Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

<span class="mw-page-title-main">Accelerated aging</span> Product testing method

Accelerated aging is testing that uses aggravated conditions of heat, humidity, oxygen, sunlight, vibration, etc. to speed up the normal aging processes of items. It is used to help determine the long-term effects of expected levels of stress within a shorter time, usually in a laboratory by controlled standard test methods. It is used to estimate the useful lifespan of a product or its shelf life when actual lifespan data is unavailable. This occurs with products that have not existed long enough to have gone through their useful lifespan: for example, a new type of car engine or a new polymer for replacement joints.

The self-accelerating decomposition temperature (SADT) is the lowest temperature at which an organic peroxide in a typical vessel or shipping package will undergo a self-accelerating decomposition within one week. The SADT is the point at which the heat evolution from the decomposition reaction and the heat removal rate from the package of interest become unbalanced. When the heat removal is too low, the temperature in the package increases and the rate of decomposition increases in an uncontrollable manner. The result is therefore dependent on the formulation and the package characteristics.

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

<span class="mw-page-title-main">Spontaneous combustion</span> Type of combustion caused by a self-perpetuating increase in internal temperatures

Spontaneous combustion or spontaneous ignition is a type of combustion which occurs by self-heating, followed by thermal runaway and finally, autoignition. It is distinct from pyrophoricity, in which a compound needs no self-heat to ignite. The correct storage of spontaneously combustible materials is extremely important, as improper storage is the main cause of spontaneous combustion. Materials such as coal, cotton, hay, and oils should be stored at proper temperatures and moisture levels to prevent spontaneous combustion. Allegations of spontaneous human combustion are considered pseudoscience.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble.

In polymers, such as plastics, thermal degradation refers to a type of polymer degradation where damaging chemical changes take place at elevated temperatures, without the simultaneous involvement of other compounds such as oxygen. Simply put, even in the absence of air, polymers will begin to degrade if heated high enough. It is distinct from thermal-oxidation, which can usually take place at less elevated temperatures.

Polymer stabilizers are chemical additives which may be added to polymeric materials to inhibit or retard their degradation. Mainly they protect plastic and rubber products against heat, oxidation, and UV light. The biggest quantity of stabilizers is used for polyvinyl chloride (PVC), as the production and processing of this type of plastic would not be possible without stabilizing chemicals. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">Weather testing of polymers</span> Controlled polymer and polymer coating degradation

Accelerated photo-ageing of polymers in SEPAP units is the controlled polymer degradation and polymer coating degradation under lab or natural conditions.

<span class="mw-page-title-main">Photo-oxidation of polymers</span>

In polymer chemistry, photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles, the process is called phototendering.

The chemistry of pressure-sensitive adhesives describes the chemical science associated with pressure-sensitive adhesives (PSA). PSA tapes and labels have become an important part of everyday life. These rely on adhesive material affixed to a backing such as paper or plastic film.

References

  1. 1 2 3 4 5 6 ASI Adhesives and Sealants, Simulating the aging of adhesives, Feb 1, 2008, Damian Ferrand, Fabian Kaser, Bertrand Roduit and Willi Schwotzer,
  2. Escobar, Luis A.; Meeker, William Q. (2006-11-01). "A Review of Accelerated Test Models". Statistical Science. 21 (4): 552–577. arXiv: 0708.0369 . doi: 10.1214/088342306000000321 . ISSN   0883-4237. S2CID   912423.
  3. 1 2 Chang, Tsunou; Sproat, Elizabeth A.; Lai, Yeh-Hung; Shephard, Nick E.; Dillard, David A. (August 31, 1995). "A Test Method for Accelerated Humidity Conditioning and Estimation of Adhesive Bond Durability". The Journal of Adhesion. 60 (1–4): 153–162. doi:10.1080/00218469708014416. ISSN   0021-8464 via Taylor&Francis Online.