Acoustic streaming

Last updated

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. [1] It is the less-known opposite of sound generation by a flow.

Contents

There are two situations where sound is absorbed in its medium of propagation:

Rayleigh streaming

Consider a plane standing sound wave that corresponds to the velocity field where . Let the characteristic (transverse) dimension of the problem be . The flow field just described corresponds to inviscid flow. However viscous effects will be important close to a solid wall; there then exists a boundary layer of thickness or, penetration depth . Rayleigh streaming is best visualized in the approximation As in , the velocity components are much less than . In addition, the characteristic time scale within the boundary layer is very large (because of the smallness of ) in comparison with the acoustic time scale . These observations imply that the flow in the boundary layer may be regarded as incompressible.

The unsteady, incompressible boundary-layer equation is

where the right-hand side terms correspond to the pressure gradient imposed on the boundary layer. The problem can be solved using the stream function that satisfies and Since by definition, velocity field in the sound wave is very small, we can formally obtain the solution for the boundary layer equation by introducing the asymptotic series for as , etc.

In the first approximation, one obtains

The solution that satisfies the no-slip condition at the wall and approaches as is given by

where and

The equation at the next order is

Since each term on the right-hand side is quadratic, it will result in terms with frequencies and The terms correspond to time independent forcing for . Let us find solution that corresponds only to this time-independent part. This leads to where satisfies the equation [6]

Rayleigh streaming Rayleigh streaming.pdf
Rayleigh streaming

where prime denotes differentiation with respect to The boundary condition at the wall implies that As , must be finite. Integrating the above equation twice gives

As , leading to the result that Thus, at the edge of the boundary, there is a steady fluid motion superposed on the oscillating motion. This velocity forcing will drive a steady streaming motion outside the boundary layer. The interesting result is that since is independent of , the steady streaming motion happening outside the boundary layer is also independent of viscosity, although its origin of existence due to the viscous boundary layer.

The outer steady streaming incompressible motion will depend on the geometry of the problem. If there are two walls one at and , then the solution is

which corresponds a periodic array of counter-rotating vortices, as shown in the figure.

Origin: a body force due to acoustic absorption in the fluid

Acoustic streaming is a non-linear effect. [7] We can decompose the velocity field in a vibration part and a steady part . The vibration part is due to sound, while the steady part is the acoustic streaming velocity (average velocity). The Navier–Stokes equations implies for the acoustic streaming velocity:

The steady streaming originates from a steady body force that appears on the right hand side. This force is a function of what is known as the Reynolds stresses in turbulence . The Reynolds stress depends on the amplitude of sound vibrations, and the body force reflects diminutions in this sound amplitude.

We see that this stress is non-linear (quadratic) in the velocity amplitude. It is non-vanishing only where the velocity amplitude varies. If the velocity of the fluid oscillates because of sound as , the quadratic non-linearity generates a steady force proportional to .

Order of magnitude of acoustic streaming velocities

Even if viscosity is responsible for acoustic streaming, the value of viscosity disappears from the resulting streaming velocities in the case of near-boundary acoustic steaming.

The order of magnitude of streaming velocities are: [8]

with the sound vibration velocity and along the wall boundary. The flow is directed towards decreasing sound vibrations (vibration nodes).

Applications

Research around acoustic streaming shows many effective applications, especially around particle manipulation, although translation to commercial use is in early stages for most uses. In microfluidics, it can be used for cell manipulation and sorting. [12] [13] These applications may include cell manipulation and cell sorting, drug delivery, homogenizing reactants. Acoustic streaming is also relevant to Sonoporation for increasing cell membrane permeability. Acoustic streaming is also used in membrane processes, where it can control fouling and increase particle collection. [14] It can control biofilms in other applications as well. [15]

See also

References

  1. Rayleigh, L. (1884). On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems. Philosophical Transactions of the Royal Society of London, 175, 1-21.
  2. see video on http://lmfa.ec-lyon.fr/spip.php?article565&lang=en
  3. Wan, Qun; Wu, Tao; Chastain, John; Roberts, William L.; Kuznetsov, Andrey V.; Ro, Paul I. (2005). "Forced Convective Cooling via Acoustic Streaming in a Narrow Channel Established by a Vibrating Piezoelectric Bimorph". Flow, Turbulence and Combustion. 74 (2): 195–206. CiteSeerX   10.1.1.471.6679 . doi:10.1007/s10494-005-4132-4. S2CID   54043789.
  4. Nama, N., Huang, P.H., Huang, T.J., and Costanzo, F., Investigation of acoustic streaming patterns around oscillating sharp edges, Lab on a Chip, Vol. 14, pp. 2824-2836, 2014
  5. Salari, A.; Appak-Baskoy, S.; Ezzo, M.; Hinz, B.; Kolios, M.C.; Tsai, S.S.H. (2019) Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. https://doi.org/10.1002/smll.201903788
  6. Landau, L. D., & Lifshitz, E. M. (2000). Fluid Mechanics (Course of Theoretical Physics, Volume 6).
  7. Sir James Lighthill (1978) "Acoustic streaming", 61, 391, Journal of Sound and Vibration
  8. Squires, T. M. & Quake, S. R. (2005) Microfluidics: Fluid physics at the nanoliter scale, Review of Modern Physics, vol. 77, page 977
  9. Longuet-Higgins, M. S. (1998). "Viscous streaming from an oscillating spherical bubble". Proc. R. Soc. Lond. A. 454 (1970): 725–742. Bibcode:1998RSPSA.454..725L. doi:10.1098/rspa.1998.0183. S2CID   123104032.
  10. Moudjed, B.; V. Botton; D. Henry; Hamda Ben Hadid; J.-P. Garandet (2014-09-01). "Scaling and dimensional analysis of acoustic streaming jets" (PDF). Physics of Fluids. 26 (9): 093602. Bibcode:2014PhFl...26i3602M. doi:10.1063/1.4895518. ISSN   1070-6631.
  11. Salari, A.; Appak-Baskoy, S.; Ezzo, M.; Hinz, B.; Kolios, M.C.; Tsai, S.S.H. (2019) Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. https://doi.org/10.1002/smll.201903788
  12. Nilsson, Andreas; Petersson, Filip; Jönsson, Henrik; Laurell, Thomas (2004). "Acoustic control of suspended particles in micro fluidic chips". Lab Chip. 4 (2): 131–135. doi:10.1039/B313493H. ISSN   1473-0197.
  13. Laurell, Thomas; Petersson, Filip; Nilsson, Andreas (2007). "Chip integrated strategies for acoustic separation and manipulation of cells and particles". Chem. Soc. Rev. 36 (3): 492–506. doi:10.1039/B601326K. ISSN   0306-0012.
  14. Barrio-Zhang, Andres; Anandan, Sudharshan; Deolia, Akshay; Wagner, Ryan; Warsinger, David M.; Ardekani, Arezoo M. (2024). "Acoustically enhanced porous media enables dramatic improvements in filtration performance". Separation and Purification Technology. 342: 126972. doi:10.1016/j.seppur.2024.126972.
  15. Lin, Fangfei; Yuan, Songmei; Ji, Pengzhen; Xu, Weixian (2023). "Regulation of Bacterial Biofilm Formation by Ultrasound: Role of Autoinducer-2 and Finite-Element Analysis of Acoustic Streaming". Ultrasound in Medicine & Biology. 49 (9): 2191–2198. doi:10.1016/j.ultrasmedbio.2023.06.016.