Acoustic streaming

Last updated

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. [1] It is the less-known opposite of sound generation by a flow.

Contents

There are two situations where sound is absorbed in its medium of propagation:

Rayleigh streaming

Consider a plane standing sound wave that corresponds to the velocity field where . Let the characteristic (transverse) dimension of the problem be . The flow field just described corresponds to inviscid flow. However viscous effects will be important close to a solid wall; there then exists a boundary layer of thickness or, penetration depth . Rayleigh streaming is best visualized in the approximation As in , the velocity components are much less than . In addition, the characteristic time scale within the boundary layer is very large (because of the smallness of ) in comparison with the acoustic time scale . These observations imply that the flow in the boundary layer may be regarded as incompressible.

The unsteady, incompressible boundary-layer equation is

where the right-hand side terms correspond to the pressure gradient imposed on the boundary layer. The problem can be solved using the stream function that satisfies and Since by definition, velocity field in the sound wave is very small, we can formally obtain the solution for the boundary layer equation by introducing the asymptotic series for as , etc.

In the first approximation, one obtains

The solution that satisfies the no-slip condition at the wall and approaches as is given by

where and

The equation at the next order is

Since each term on the right-hand side is quadratic, it will result in terms with frequencies and The terms correspond to time independent forcing for . Let us find solution that corresponds only to this time-independent part. This leads to where satisfies the equation [6]

Rayleigh streaming Rayleigh streaming.pdf
Rayleigh streaming

where prime denotes differentiation with respect to The boundary condition at the wall implies that As , must be finite. Integrating the above equation twice gives

As , leading to the result that Thus, at the edge of the boundary, there is a steady fluid motion superposed on the oscillating motion. This velocity forcing will drive a steady streaming motion outside the boundary layer. The interesting result is that since is independent of , the steady streaming motion happening outside the boundary layer is also independent of viscosity, although its origin of existence due to the viscous boundary layer.

The outer steady streaming incompressible motion will depend on the geometry of the problem. If there are two walls one at and , then the solution is

which corresponds a periodic array of counter-rotating vortices, as shown in the figure.

Origin: a body force due to acoustic absorption in the fluid

Acoustic streaming is a non-linear effect. [7] We can decompose the velocity field in a vibration part and a steady part . The vibration part is due to sound, while the steady part is the acoustic streaming velocity (average velocity). The Navier–Stokes equations implies for the acoustic streaming velocity:

The steady streaming originates from a steady body force that appears on the right hand side. This force is a function of what is known as the Reynolds stresses in turbulence . The Reynolds stress depends on the amplitude of sound vibrations, and the body force reflects diminutions in this sound amplitude.

We see that this stress is non-linear (quadratic) in the velocity amplitude. It is non-vanishing only where the velocity amplitude varies. If the velocity of the fluid oscillates because of sound as , the quadratic non-linearity generates a steady force proportional to .

Order of magnitude of acoustic streaming velocities

Even if viscosity is responsible for acoustic streaming, the value of viscosity disappears from the resulting streaming velocities in the case of near-boundary acoustic steaming.

The order of magnitude of streaming velocities are: [8]

with the sound vibration velocity and along the wall boundary. The flow is directed towards decreasing sound vibrations (vibration nodes).

See also

Related Research Articles

<span class="mw-page-title-main">Gyrocompass</span> Type of non-magnetic compass based on the rotation of the Earth

A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and the rotation of the Earth to find geographical direction automatically. The use of a gyrocompass is one of the seven fundamental ways to determine the heading of a vehicle. A gyroscope is an essential component of a gyrocompass, but they are different devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect. Gyrocompasses are widely used for navigation on ships, because they have two significant advantages over magnetic compasses:

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Stream function</span>

The stream function is defined for incompressible (divergence-free) flows in two dimensions – as well as in three dimensions with axisymmetry. The flow velocity components can be expressed as the derivatives of the scalar stream function. The stream function can be used to plot streamlines, which represent the trajectories of particles in a steady flow. The two-dimensional Lagrange stream function was introduced by Joseph Louis Lagrange in 1781. The Stokes stream function is for axisymmetrical three-dimensional flow, and is named after George Gabriel Stokes.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

Particle velocity is the velocity of a particle in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string.

Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure, but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

<span class="mw-page-title-main">Electromagnetic reverberation chamber</span>

An electromagnetic reverberation chamber (also known as a reverb chamber (RVC) or mode-stirred chamber (MSC)) is an environment for electromagnetic compatibility (EMC) testing and other electromagnetic investigations. Electromagnetic reverberation chambers have been introduced first by H.A. Mendes in 1968. A reverberation chamber is screened room with a minimum of absorption of electromagnetic energy. Due to the low absorption very high field strength can be achieved with moderate input power. A reverberation chamber is a cavity resonator with a high Q factor. Thus, the spatial distribution of the electrical and magnetic field strengths is strongly inhomogeneous (standing waves). To reduce this inhomogeneity, one or more tuners (stirrers) are used. A tuner is a construction with large metallic reflectors that can be moved to different orientations in order to achieve different boundary conditions. The Lowest Usable Frequency (LUF) of a reverberation chamber depends on the size of the chamber and the design of the tuner. Small chambers have a higher LUF than large chambers.

<span class="mw-page-title-main">Stokes drift</span> Average velocity of a fluid parcel in a gravity wave

For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Potential flow around a circular cylinder</span> Classical solution for inviscid, incompressible flow around a cyclinder

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.

In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.

<span class="mw-page-title-main">Stokes problem</span>

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier-Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow where Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

References

  1. Rayleigh, L. (1884). On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems. Philosophical Transactions of the Royal Society of London, 175, 1-21.
  2. see video on http://lmfa.ec-lyon.fr/spip.php?article565&lang=en
  3. Wan, Qun; Wu, Tao; Chastain, John; Roberts, William L.; Kuznetsov, Andrey V.; Ro, Paul I. (2005). "Forced Convective Cooling via Acoustic Streaming in a Narrow Channel Established by a Vibrating Piezoelectric Bimorph". Flow, Turbulence and Combustion. 74 (2): 195–206. CiteSeerX   10.1.1.471.6679 . doi:10.1007/s10494-005-4132-4. S2CID   54043789.
  4. Nama, N., Huang, P.H., Huang, T.J., and Costanzo, F., Investigation of acoustic streaming patterns around oscillating sharp edges, Lab on a Chip, Vol. 14, pp. 2824-2836, 2014
  5. Salari, A.; Appak-Baskoy, S.; Ezzo, M.; Hinz, B.; Kolios, M.C.; Tsai, S.S.H. (2019) Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. https://doi.org/10.1002/smll.201903788
  6. Landau, L. D., & Lifshitz, E. M. (2000). Fluid Mechanics (Course of Theoretical Physics, Volume 6).
  7. Sir James Lighthill (1978) "Acoustic streaming", 61, 391, Journal of Sound and Vibration
  8. Squires, T. M. & Quake, S. R. (2005) Microfluidics: Fluid physics at the nanoliter scale, Review of Modern Physics, vol. 77, page 977
  9. Longuet-Higgins, M. S. (1998). "Viscous streaming from an oscillating spherical bubble". Proc. R. Soc. Lond. A. 454 (1970): 725–742. Bibcode:1998RSPSA.454..725L. doi:10.1098/rspa.1998.0183. S2CID   123104032.
  10. Moudjed, B.; V. Botton; D. Henry; Hamda Ben Hadid; J.-P. Garandet (2014-09-01). "Scaling and dimensional analysis of acoustic streaming jets" (PDF). Physics of Fluids. 26 (9): 093602. Bibcode:2014PhFl...26i3602M. doi:10.1063/1.4895518. ISSN   1070-6631.
  11. Salari, A.; Appak-Baskoy, S.; Ezzo, M.; Hinz, B.; Kolios, M.C.; Tsai, S.S.H. (2019) Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. https://doi.org/10.1002/smll.201903788