Acoustic tweezers

Last updated

Acoustic tweezers (also known as acoustical tweezers) are a set of tools that use sound waves to manipulate the position and movement of very small objects. [1] Strictly speaking, only a single-beam based configuration can be called acoustical tweezers. However, the broad concept of acoustical tweezers involves two configurations of beams: single beam and standing waves. The technology works by controlling the position of acoustic pressure nodes [2] that draw objects to specific locations of a standing acoustic field. [3] The target object must be considerably smaller than the wavelength of sound used, and the technology is typically used to manipulate microscopic particles.[ citation needed ]

Contents

Acoustic waves have been proven safe for biological objects, making them ideal for biomedical applications. [4] Recently, applications for acoustic tweezers have been found in manipulating sub-millimetre objects, such as flow cytometry, cell separation, cell trapping, single-cell manipulation, and nanomaterial manipulation. [5] The use of one-dimensional standing waves to manipulate small particles was first reported in the 1982 research article "Ultrasonic Inspection of Fiber Suspensions". [6]

Method

Acoustic tweezers were used to put these 10 cells into the pattern of the letters "A" and "T" at a scale of a few hundred microns. Cells patterned with selective acoustical tweezers.png
Acoustic tweezers were used to put these 10 cells into the pattern of the letters "A" and "T" at a scale of a few hundred microns.

In a standing acoustic field, objects experience an acoustic-radiation force that moves them to specific regions of the field. [2] Depending on an object's properties, such as density and compressibility, it can be induced to move to either acoustic pressure nodes (minimum pressure regions) or pressure antinodes (maximum pressure regions). [3] As a result, by controlling the position of these nodes, the precise movement of objects using sound waves is feasible. Acoustic tweezers do not require expensive equipment or complex experimental setups.[ citation needed ]

Fundamental theory

Particles in an acoustic field can be moved by forces originating from the interaction among the acoustic waves, fluid, and particles. These forces (including acoustic radiation force, secondary field force between particles, and Stokes drag force) create the phenomena of acoustophoresis, which is the foundation of the acoustic tweezers technology.

Acoustic radiation force

When a particle is suspended in the field of a sound wave, an acoustic radiation force that has risen from the scattering of the acoustic waves is exerted on the particle. This was first modeled and analyzed for incompressible particles in an ideal fluid by Louis King in 1934. [7] Yosioka and Kawasima calculated the acoustic radiation force on compressible particles in a plane wave field in 1955. [8] Gorkov summarized the previous work and proposed equations to determine the average force acting on a particle in an arbitrary acoustical field when its size is much smaller than the wavelength of the sound. [2] Recently, Bruus revisited the problem and gave detailed derivation for the acoustic radiation force. [9]

Fig. 1: acoustic radiation force on a small particle Figure1 zhangming.png
Fig. 1: acoustic radiation force on a small particle

As shown in Figure 1, the acoustic radiation force on a small particle results from a non-uniform flux of momentum in the near-field region around the particle, , which is caused by the incoming acoustic waves and the scattering on the surface of the particle when acoustic waves propagate through it. For a compressible spherical particle with a diameter much smaller than the wavelength of acoustic waves in an ideal fluid, the acoustic radiation force can be calculated by , where is a given quantity, also called acoustic potential energy. [2] [9] The acoustic potential energy is expressed as:

where

The coefficients and can be calculated by and

where

Acoustic radiation force in standing waves

The standing waves can form a stable acoustic potential energy field, so they are able to create stable acoustic radiation force distribution, which is desirable for many acoustic tweezers applications. For one-dimension planar standing waves, the acoustic fields are given by: [9]

,

,

,

where

With these fields, the time-average terms can be obtained. These are:

,

,

Thus, the acoustic potential energy is:

,

Then, the acoustic radiation force is found by differentiation:

,

, ,

Fig. 2: positions of pressure nodes (PN) and antinodes (AN) along acoustic pressure waveform Figure 2 Zhangming.png
Fig. 2: positions of pressure nodes (PN) and antinodes (AN) along acoustic pressure waveform

where

The term shows that the radiation force period is one-half of the pressure period. Also, the contrast factor can be positive or negative depending on the properties of particles and fluid. For positive value of , the radiation force points from the pressure antinodes to the pressure nodes, as shown in Figure 2, and the particles will be pushed to the pressure nodes.

Secondary acoustic forces

When multiple particles in a suspension are exposed to a standing wave field, they will not only experience acoustic radiation force, but also secondary acoustic forces caused by waves scattered by other particles. The inter-particle forces are sometimes called Bjerknes forces. A simplified equation for the inter-particle forces of identical particles is: [10] [11]

where

The sign of the force represents its direction: a negative sign for an attractive force, and a positive sign for a repulsive force. The left side of the equation depends on the acoustic particle velocity amplitude and the right side depends on the acoustic pressure amplitude . The velocity-dependent term is repulsive when particles are aligned with wave propagation (Θ=0°), and negative when perpendicular to wave propagation (Θ=90°). The pressure-dependent term is unaffected by the particle orientation and is always attractive. In the case of a positive contrast factor, the velocity-dependent term diminishes as particles are driven to the velocity node (pressure antinode), as in the case of air bubbles and lipid vesicles. In a similar way, the pressure-dependent term diminishes as particles are driven towards the pressure node (velocity antinode), as are most solid particles in aqueous solutions.

In addition to the scattering-related secondary acoustic forces, the flow field resulting from the interactions of the various acoustic streaming fields, generated by the acoustic boundary layer of each particle (sometimes called microstreaming), can induce additional viscous shear forces on each of the particles' surfaces, which then results in an additional contribution to the secondary acoustic forces in its fully viscous formulations. [12] The viscous effects on the secondary acoustic force can become significant when compared to the perfect fluid formulation exemplified above, and even dominant in certain limit cases, yielding both quantitatively and qualitatively different results than what is predicted by inviscid theory. [13] The relevance of the viscous contributions varies greatly depending on the specific case being investigated, and thus important care needs to be taken in selecting an appropriate secondary acoustic force model for the given scenario.

The influence of the secondary forces is usually very weak, and only has an effect when the distance between particles is very small. It becomes important in aggregation and sedimentation applications, where particles are initially gathered in nodes by the acoustic radiation force. As inter-particle distances become smaller, the secondary forces assist in further aggregation until the clusters become heavy enough for sedimentation to begin.

Acoustic streaming

Acoustic streaming is a steady flow generated by the nonlinear component of the oscillations in an acoustic field.[ further explanation needed ] Depending on the mechanisms, the acoustic streaming can be categorized into two general types, Eckart streaming and Rayleigh streaming. [14] [15] Eckart streaming is driven by a time-average momentum flux created when high-amplitude acoustic waves propagate and attenuate in a fluid. Rayleigh streaming, also called "boundary driven streaming", is forced by Reynolds stresses in the viscous boundary layer. Both of the driven mechanisms come from a time-average nonlinear effect.

A perturbation approach is used to analyze the phenomenon of nonlinear acoustic streaming. [16] The governing equations for this problem are mass conservation and Navier-Stokes equations

,

where

The perturbation series can be written as , , , which are diminishing series with the higher-order terms much smaller than the lower-order ones.

The liquid is quiescent and homogeneous at its zero-order state. Substituting the perturbation series into the mass conservation and Navier-Stokes equation and using the relation of , the first-order equations can be obtained by collecting terms in first-order,

,
.

Similarly, the second-order equations can be found as well,

,
.

For the first-order equations, taking the time derivation of the Navier-Stokes equation and inserting the mass conservation, a combined equation can be found:

.

This is an acoustic wave equation with viscous attenuation. Physically, and can be interpreted as the acoustic pressure and the velocity of the acoustic particle.

The second-order equations can be considered as governing equations used to describe the motion of fluid with mass source and force source . Generally, the acoustic streaming is a steady mean flow, where the response time scale is much smaller than the one of the acoustic vibration. The time-average term is normally used to present the acoustic streaming. By using , the time-average second-order equations can be obtained:

,
.
Fig. 3: Cross-section of acoustic streaming around a solid cylindrical pillar Figure4 Zhangming.png
Fig. 3: Cross-section of acoustic streaming around a solid cylindrical pillar

It is important to note that the time-averaging of pure first-order terms lead to their cancellation, since they are by definition harmonic. This means that they are pure sine waves, and thus have a mean of 0, which leads to the cancellation of any term that contains them. Second-order terms are, however, not harmonic, and do not get cancelled out by time-averaging. [17] This is most important for understanding acoustic streaming: first-order terms, related to simple oscillatory motion, have much larger magnitudes than second-order terms, and thus are dominant in the oscillation time-scale. Those first-order terms, however, being pure sines, in a quasi-steady state, repeat after each oscillation cycle, yielding no net fluid flow. Second-order terms, instead, are not harmonic, and thus can have a cumulative effect which, despite being smaller, can add up over many oscillation cycles, leading to the development of the net steady-state flow we identify as acoustic streaming.

In determining the acoustic streaming, the second-order equations are thus most important. Since Navier-Stokes equations can only be analytically solved for simple cases, numerical methods are typically used, with the finite element method (FEM) the most common technique. It can be employed to simulate the acoustic streaming phenomena. Figure 3 is one example of acoustic streaming around a solid circular pillar, which is calculated by FEM.

As mentioned, acoustic streaming is driven by mass and force sources originating from the acoustic attenuation. However, these are not the only driven forces for acoustic streaming. The boundary vibration may also contribute, especially to "boundary driven streaming". For these cases, the boundary condition should also be processed by the perturbation approach and be imposed on the two order equations accordingly.

Particle motion

The motion of a suspended particle whose gravity is balanced by the buoyancy force in an acoustic field is determined by two forces: the acoustic radiation force and Stokes drag force. By applying Newton's law, the motion can be described as:

,
.

where

For applications in a static flow, the fluid velocity comes from the acoustic streaming. The magnitude of acoustic streaming depends on the power and frequency of the input and the properties of the fluid media. For typical acoustic-based microdevices, the operating frequency may be from the kHz to the MHz range. The vibration amplitude is in a range of 0.1 nm to 1 μm. Assuming the fluid used is water, the estimated magnitude of acoustic streaming is in the range of 1 μm/s to 1 mm/s. Thus, the acoustic streaming should be smaller than the main flow for most continuous flow applications. The drag force is mainly induced by the main flow in those applications.

Applications

Cell separation

Cells with different densities and compression strengths can theoretically be separated with acoustic force. It has been suggested that acoustic tweezers could be used to separate lipid particles from red blood cells. [18] This is a problem during cardiac surgery supported by a heart-lung machine, for which current technologies are insufficient. According to the proposal, acoustic force applied to blood plasma passing through a channel will cause red blood cells to gather in the pressure node in the center and the lipid particles to gather in antinodes at the sides (see Figure 4). At the end of the channel, the separated cells and particles exit through separate outlets.

The acoustic method might also be used to separate particles of different sizes. According to the equation of primary acoustic radiation force, larger particles experience larger forces than smaller particles. Shi et al. reported using interdigital transducers (IDTs) to generate a standing surface acoustic wave (SSAW) field with pressure nodes in the middle of a microfluidic channel, separating microparticles with different diameters. [19] When introducing a mixture of particles with different sizes from the edge of the channel, larger particles will migrate toward the middle more quickly and be collected at the center outlet. Smaller particles will not be able to migrate to the center outlet before they are collected from the side outlets. This experimental setup has also been used to separate blood components, bacteria, and hydrogel particles. [20] [21] [22]

3D cell focusing

Fluorescence-activated cell sorters (FACS) can sort cells by focusing a fluid stream containing the cells, detecting fluorescence from individual cells, and separating the cells of interest from other cells. They have high throughput but are expensive to purchase and maintain, and are bulky with a complex configuration. They also affect cell physiology with high shear pressure, impact forces and electromagnetic forces, which may result in cellular and genetic damage. Acoustic forces are not dangerous to cells,[ citation needed ] and there has been progress integrating acoustic tweezers with optical/electrical modules for simultaneous cell analysis and sorting, in a smaller and less-expensive machine.

Acoustic tweezers have been developed to achieve 3D focusing of cells/particles in microfluidics. [23] A pair of interdigital transducers (IDTs) are deposited on a piezoelectric substrate, and a microfluidic channel is bonded with the substrate and positioned between the two IDTs. Microparticle solutions are infused into the microfluidic channel by a pressure-driven flow. Once an RF signal is applied to both IDTs, two series of surface acoustic waves (SAW) propagate in opposite directions toward the particle suspension solution inside the microchannel. The constructive interference of the two SAWs results in the formation of a SSAW. Leakage waves in the longitudinal mode are generated inside the channel, causing pressure fluctuations that act laterally on the particles. As a result, the suspended particles inside the channel will be forced toward either the pressure nodes or antinodes, depending on the density and compressibility of the particles and the medium. When the channel width covers only one pressure node (or antinode), the particles will be focused in that node.

In addition to focusing in a horizontal direction, cells/particles can also be focused in the vertical direction. [24] After SSAW is on, the randomly distributed particles are focused into a single file stream (Fig. 10c) in the vertical direction. By integrating a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with laser-induced fluorescence (LIF) detection system, acoustic tweezers are developed into a microflow cytometer for high-throughput single cell analysis.

The tunability offered by chirped[ clarification needed ] interdigital transducers [25] [26] renders it capable of precisely sorting cells into a number (e.g., five) of outlet channels in a single step. This is a major advantage over most existing sorting methods, which typically only sort cells into two outlet channels.

Noninvasive cell trapping and patterning

A glass reflector with etched fluidic channels is clamped to the PCB holding the transducer. Cells infused into the chip are trapped in the ultrasonic standing wave formed in the channel. The acoustic forces focus the cells into clusters in the center of the channel as illustrated in the inset. Since the trapping occurs close to the transducer surface, the actual trapping sites are given by the near-field pressure distribution as shown in the 3D image. Cells will be trapped in clusters around the local pressure minima creating different patterns depending on the number of cells trapped. The peaks in the graph correspond to the pressure minima.

Manipulation of single cell, particle, or organism

Fig. 4: Traces of single cell manipulation Fig. 18 Xiaoyun.png
Fig. 4: Traces of single cell manipulation

Manipulating single cells is important to many biological studies, such as in controlling the cellular microenvironment and isolating specific cells of interest. Acoustic tweezers have been demonstrated to manipulate each individual cell with micrometer-level resolution. Cells generally have a diameter of 10–20 μm. To meet the resolution requirements of manipulating single cells, short-wavelength acoustic waves should be employed. In this case, a surface acoustic wave (SAW) is preferred to a bulk acoustic wave (BAW), because it allows using shorter-wavelength acoustic waves (normally less than 200 μm). [27] Ding et al. reported a SSAW microdevice that is able to manipulate single cells with prescribed paths. [28] Figure 6 records a demonstration that the movement of single cells can be finely controlled with acoustic tweezers. The working principle of the device lies in the controlled movement of pressure nodes in an SSAW field. Ding et al. employed chirped interdigital transducers (IDTs) that are able to generate SSAWs with adjustable positions of pressure nodes by changing the input frequency. They also showed that the millimeter-sized microorganism C. elegan can be manipulated in the same manner. They also examined cell metabolism and proliferation after acoustic treatment, and found no significant differences compared to the control group, indicating the non-invasive nature of acoustic base manipulation. In addition to using chirped IDTs, phaseshift-based single particle/cell manipulation has also been reported. [29] [30] [31]

Manipulation of single biomolecules

Sitters et al. have shown that acoustics can be used to manipulate single biomolecules such as DNA and proteins. This method, which the inventors call acoustic force spectroscopy, allows measuring the force response of single molecules. This is achieved by attaching small microspheres to the molecules at one side and attaching them to a surface at the other. By pushing the microspheres away from the surface with a standing acoustic wave the molecules are effectively stretched out. [32]

Manipulation of organic nano-materials

Polymer-dispersed liquid crystal (PDLC) displays can be switched from opaque to transparent using acoustic tweezers. A SAW-driven PDLC light shutter has been demonstrated by integrating a cured PDLC film and a pair of interdigital transducers (IDTs) onto a piezoelectric substrate. [33]

Manipulation of inorganic nano-materials

Acoustic tweezers provide a simple approach for tuneable nanowire patterning. In this approach, SSAWs are generated by interdigital transducers, which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires are assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. [34]

Selective manipulation

While most acoustic tweezers are able to manipulate a large number of objects collectively, [27] a complementary function is to be able to manipulate a single particle within a cluster without moving adjacent objects. To achieve this goal, the acoustic trap must be localized spacially. A first approach consists in using highly focused acoustic beams. [35] Since many particles of interest are attracted to the nodes of an acoustic field and thus expelled from the focus point, some specific wave structures combining strong focalization but with a minimum of the pressure amplitude at the focal point (surrounded by a ring of intensity to create the trap) are required to trap this type of particle. These specific conditions are met by Bessel beams of topological order larger than zero, also called "acoustical vortices". With this kind of wave structures, the 2D [36] and 3D [37] [38] selective manipulation of particles has been demonstrated with an array of transducers driven by programmable electronics.

Alternatively, another approach to localize the acoustic energy relies on the use of nanosecond-scale pulsed fields to generate localized acoustic standing waves. [39]

High frequency tweezers and holographic InterDigitated Transducers (IDTs)

The individual selective manipulation of micro-objects requires to synthesize complex acoustic fields such as acoustic vortices (see previous section) at sufficiently high frequency to reach the necessary spatial resolution (typically the wavelength must be comparable to the size of the manipulated object to be selective). Many holographic methods have been developed to synthesize complex wavefields including transducer arrays, [40] [41] [36] [42] [38] 3D printed holograms, [43] metamaterials [44] or diffraction gratings. [45] [46] Nevertheless, all these methods are limited to relatively low frequencies with an insufficient resolution to address micrometric particles, cells or microorganisms individually. On the other hand, InterDigitated Transducers (IDTs) were known as a reliable technique to synthesize acoustic wavefields up to GHz frequency. [47]

See also

Related Research Articles

Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

<span class="mw-page-title-main">Baroclinity</span> Measure of misalignment between the gradients of pressure and density in a fluid

In fluid dynamics, the baroclinity of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure. A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.

In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the equation describes acoustic waves in only one spatial dimension, while a more general form describes waves in three dimensions. Propagating waves in a pre-defined direction can also be calculated using a first order one-way wave equation.

In acoustics, the acoustic contrast factor is a number that describes the relationship between the densities and the sound velocities of two media, or equivalently, the relationship between the densities and compressibilities of two media. It is most often used in the context of biomedical ultrasonic imaging techniques using acoustic contrast agents and in the field of ultrasonic manipulation of particles (acoustophoresis) much smaller than the wavelength using ultrasonic standing waves. In the latter context, the acoustic contrast factor is the number which, depending on its sign, tells whether a given type of particle in a given medium will be attracted to the pressure nodes or anti-nodes.

<span class="mw-page-title-main">Nonlinear acoustics</span>

Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.

The Dean number (De) is a dimensionless group in fluid mechanics, which occurs in the study of flow in curved pipes and channels. It is named after the British scientist W. R. Dean, who was the first to provide a theoretical solution of the fluid motion through curved pipes for laminar flow by using a perturbation procedure from a Poiseuille flow in a straight pipe to a flow in a pipe with very small curvature.

Electroacoustic phenomena arise when ultrasound propagates through a fluid containing ions. The associated particle motion generates electric signals because ions have electric charge. This coupling between ultrasound and electric field is called electroacoustic phenomena. The fluid might be a simple Newtonian liquid, or complex heterogeneous dispersion, emulsion or even a porous body. There are several different electroacoustic effects depending on the nature of the fluid.

<span class="mw-page-title-main">Langmuir circulation</span> Series of shallow, slow, counter-rotating vortices at the oceans surface aligned with the wind

In physical oceanography, Langmuir circulation consists of a series of shallow, slow, counter-rotating vortices at the ocean's surface aligned with the wind. These circulations are developed when wind blows steadily over the sea surface. Irving Langmuir discovered this phenomenon after observing windrows of seaweed in the Sargasso Sea in 1927. Langmuir circulations circulate within the mixed layer; however, it is not yet so clear how strongly they can cause mixing at the base of the mixed layer.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

Acoustic radiation force (ARF) is a physical phenomenon resulting from the interaction of an acoustic wave with an obstacle placed along its path. Generally, the force exerted on the obstacle is evaluated by integrating the acoustic radiation pressure over its time-varying surface.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

The multiphase particle-in-cell method (MP-PIC) is a numerical method for modeling particle-fluid and particle-particle interactions in a computational fluid dynamics (CFD) calculation. The MP-PIC method achieves greater stability than its particle-in-cell predecessor by simultaneously treating the solid particles as computational particles and as a continuum. In the MP-PIC approach, the particle properties are mapped from the Lagrangian coordinates to an Eulerian grid through the use of interpolation functions. After evaluation of the continuum derivative terms, the particle properties are mapped back to the individual particles. This method has proven to be stable in dense particle flows, computationally efficient, and physically accurate. This has allowed the MP-PIC method to be used as particle-flow solver for the simulation of industrial-scale chemical processes involving particle-fluid flows.

Bjerknes forces are translational forces on bubbles in a sound wave. The phenomenon is a type of acoustic radiation force. Primary Bjerknes forces are caused by an external sound field; secondary Bjerknes forces are attractive or repulsive forces between pairs of bubbles in the same sound field caused by the pressure field generated by each bubble volume's oscillations. They were first described by Vilhelm Bjerknes in his 1906 Fields of Force.

References

  1. Ozcelik, A., Rufo, J., Guo, F. et al. Acoustic tweezers for the life sciences. Nat Methods 15, 1021–1028 (2018). https://doi.org/10.1038/s41592-018-0222-9
  2. 1 2 3 4 Gorkov, L. P.; Soviet Physics- Doklady, 1962, 6(9), 773-775.
  3. 1 2 Nilsson, Andreas; Petersson, Filip; Jönsson, Henrik; Laurell, Thomas (2004). "Acoustic control of suspended particles in micro fluidic chips". Lab Chip. Royal Society of Chemistry (RSC). 4 (2): 131–135. doi:10.1039/b313493h. ISSN   1473-0197. PMID   15052353.
  4. Lin, Sz-Chin Steven; Mao, Xiaole; Huang, Tony Jun (2012). "Surface acoustic wave (SAW) acoustophoresis: now and beyond". Lab on a Chip. Royal Society of Chemistry (RSC). 12 (16): 2766–2770. doi:10.1039/c2lc90076a. ISSN   1473-0197. PMC   3992433 . PMID   22781941.
  5. Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun (2013). "Surface acoustic wave microfluidics". Lab on a Chip. Royal Society of Chemistry (RSC). 13 (18): 3626–3649. doi:10.1039/c3lc50361e. ISSN   1473-0197. PMC   3992948 . PMID   23900527.
  6. Dion, J. L.; Malutta, A.; Cielo, P. (1982). "Ultrasonic Inspection Of Fiber Suspensions". Journal of the Acoustical Society of America. 72 (5): 1524–1526. Bibcode:1982ASAJ...72.1524D. doi:10.1121/1.388688.
  7. King, Louis V. (1934-11-15). "On the acoustic radiation pressure on spheres". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. The Royal Society. 147 (861): 212–240. Bibcode:1934RSPSA.147..212K. doi: 10.1098/rspa.1934.0215 . ISSN   2053-9169.
  8. Yosioka, K. and Kawasima, Y.; Acustica, 1955, 5(3), 167-173.
  9. 1 2 3 Bruus, Henrik (2012). "Acoustofluidics 7: The acoustic radiation force on small particles". Lab on a Chip. Royal Society of Chemistry (RSC). 12 (6): 1014–1021. doi:10.1039/c2lc21068a. ISSN   1473-0197. PMID   22349937.
  10. Weiser, M. A. H.; Apfel, R. E., and Neppiras, E. A.; Acustica, 1984, 56(2), 114-119.
  11. Laurell, Thomas; Petersson, Filip; Nilsson, Andreas (2007). "Chip integrated strategies for acoustic separation and manipulation of cells and particles". Chemical Society Reviews. Royal Society of Chemistry (RSC). 36 (3): 492–506. doi:10.1039/b601326k. ISSN   0306-0012. PMID   17325788.
  12. Doinikov, Alexander A. (1994). "Acoustic radiation pressure on a compressible sphere in a viscous fluid". Journal of Fluid Mechanics. 267: 1–22. Bibcode:1994JFM...267....1D. doi:10.1017/S0022112094001096. S2CID   123245307 . Retrieved 10 April 2023.
  13. Baasch, Thierry; Pavlic, Alen; Dual, Jürg (December 2019). "Acoustic radiation force acting on a heavy particle in a standing wave can be dominated by the acoustic microstreaming". Phys. Rev. E. 100 (6): 061102. Bibcode:2019PhRvE.100f1102B. doi:10.1103/PhysRevE.100.061102. PMID   31962519. S2CID   210870075 . Retrieved 10 April 2023.
  14. Lighthill, Sir James (1978). "Acoustic streaming". Journal of Sound and Vibration. Elsevier BV. 61 (3): 391–418. Bibcode:1978JSV....61..391L. doi:10.1016/0022-460x(78)90388-7. ISSN   0022-460X.
  15. Boluriann, S. and Morris, P. J.; Aeroacoustics, 2003, 2(3), 255-292.
  16. Bruus, Henrik (2012). "Acoustofluidics 2: Perturbation theory and ultrasound resonance modes". Lab Chip. Royal Society of Chemistry (RSC). 12 (1): 20–28. doi:10.1039/c1lc20770a. ISSN   1473-0197. PMID   22105715.
  17. Bruus, Henrik (15 December 2014). "Perturbation Theory and Ultrasound Resonances". Microscale Acoustofluidics. The Royal Society of Chemistry. pp. 29–45. doi:10.1039/9781849737067-00029. ISBN   978-1-84973-671-8.
  18. Petersson, Filip; Nilsson, Andreas; Holm, Cecilia; Jönsson, Henrik; Laurell, Thomas (2005). "Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces". Lab Chip. 5 (1): 20–22. doi:10.1039/B405748C. ISSN   1473-0197. PMID   15616735.
  19. Shi, Jinjie; Huang, Hua; Stratton, Zak; Huang, Yiping; Huang, Tony Jun (2009). "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)". Lab on a Chip. Royal Society of Chemistry (RSC). 9 (23): 3354–3359. doi:10.1039/b915113c. ISSN   1473-0197. PMID   19904400.
  20. Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun (2011). "Separation of platelets from whole blood using standing surface acoustic waves in a microchannel". Lab on a Chip. Royal Society of Chemistry (RSC). 11 (19): 3361–3364. doi:10.1039/c1lc20346k. ISSN   1473-0197. PMID   21842070.
  21. Ai, Ye; Sanders, Claire K.; Marrone, Babetta L. (2013-09-09). "Separation ofEscherichia coliBacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves". Analytical Chemistry. American Chemical Society (ACS). 85 (19): 9126–9134. doi: 10.1021/ac4017715 . ISSN   0003-2700. PMC   3789253 . PMID   23968497.
  22. Nam, Jeonghun; Lim, Hyunjung; Kim, Choong; Yoon Kang, Ji; Shin, Sehyun (2012). "Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave". Biomicrofluidics. AIP Publishing. 6 (2): 24120–2412010. doi: 10.1063/1.4718719 . ISSN   1932-1058. PMC   3365908 . PMID   22670167.
  23. Shi, Jinjie; Mao, Xiaole; Ahmed, Daniel; Colletti, Ashley; Huang, Tony Jun (2008). "Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)". Lab Chip. Royal Society of Chemistry (RSC). 8 (2): 221–223. doi:10.1039/b716321e. ISSN   1473-0197. PMID   18231658.
  24. Shi, Jinjie; Yazdi, Shahrzad; Steven Lin, Sz-Chin; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun (2011). "Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)". Lab on a Chip. Royal Society of Chemistry (RSC). 11 (14): 2319–24. doi:10.1039/c1lc20042a. ISSN   1473-0197. PMC   3997299 . PMID   21709881.
  25. Li, Sixing; Ding, Xiaoyun; Guo, Feng; Chen, Yuchao; Lapsley, Michael Ian; et al. (2013-05-23). "An On-Chip, Multichannel Droplet Sorter Using Standing Surface Acoustic Waves". Analytical Chemistry. American Chemical Society (ACS). 85 (11): 5468–5474. doi:10.1021/ac400548d. ISSN   0003-2700. PMC   3988909 . PMID   23647057.
  26. Ding, Xiaoyun; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Li, Sixing; Guo, Xiang; Chan, Chung Yu; Chiang, I-Kao; Wang, Lin; McCoy, J. Philip; Huang, Tony Jun (2012). "Standing surface acoustic wave (SSAW) based multichannel cell sorting". Lab on a Chip. Royal Society of Chemistry (RSC). 12 (21): 4228–31. doi:10.1039/c2lc40751e. ISSN   1473-0197. PMC   3956451 . PMID   22992833.
  27. 1 2 Gedge, Michael; Hill, Martyn (2012). "Acoustofluidics 17: Theory and applications of surface acoustic wave devices for particle manipulation" (PDF). Lab on a Chip. Royal Society of Chemistry (RSC). 12 (17): 2998–3007. doi:10.1039/c2lc40565b. ISSN   1473-0197. PMID   22842855.
  28. Ding, X.; Lin, S.-C. S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S. J.; Huang, T. J. (2012-06-25). "On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves". Proceedings of the National Academy of Sciences. 109 (28): 11105–11109. Bibcode:2012PNAS..10911105D. doi: 10.1073/pnas.1209288109 . ISSN   0027-8424. PMC   3396524 . PMID   22733731.
  29. Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Grinenko, Alon; Wilcox, Paul D.; Cochran, Sandy; Drinkwater, Bruce W. (2014-04-14). "Independent trapping and manipulation of microparticles using dexterous acoustic tweezers". Applied Physics Letters. AIP Publishing. 104 (15): 154103. Bibcode:2014ApPhL.104o4103C. doi: 10.1063/1.4870489 . ISSN   0003-6951.
  30. Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong (2012-04-23). "Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves". Applied Physics Letters. AIP Publishing. 100 (17): 173701. Bibcode:2012ApPhL.100q3701M. doi:10.1063/1.4704922. ISSN   0003-6951.
  31. Wood, C. D.; Cunningham, J. E.; O'Rorke, R.; Wälti, C.; Linfield, E. H.; Davies, A. G.; Evans, S. D. (2009-02-02). "Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves". Applied Physics Letters. AIP Publishing. 94 (5): 054101. Bibcode:2009ApPhL..94e4101W. doi:10.1063/1.3076127. ISSN   0003-6951.
  32. Sitters, Gerrit; Kamsma, Douwe; Thalhammer, Gregor; Ritsch-Marte, Monika; Peterman, Erwin J G; Wuite, Gijs J L (2014-11-24). "Acoustic force spectroscopy". Nature Methods. Springer Science and Business Media LLC. 12 (1): 47–50. doi:10.1038/nmeth.3183. ISSN   1548-7091. PMID   25419961. S2CID   12886472.
  33. Liu, Yan Jun; Ding, Xiaoyun; Lin, Sz-Chin Steven; Shi, Jinjie; Chiang, I-Kao; Huang, Tony Jun (2011-03-14). "Surface Acoustic Wave Driven Light Shutters Using Polymer-Dispersed Liquid Crystals". Advanced Materials. Wiley. 23 (14): 1656–1659. Bibcode:2011AdM....23.1656L. doi:10.1002/adma.201003708. ISSN   0935-9648. PMID   21438028. S2CID   205238981.
  34. Chen, Yuchao; Ding, Xiaoyun; Steven Lin, Sz-Chin; Yang, Shikuan; Huang, Po-Hsun; et al. (2013-04-09). "Tunable Nanowire Patterning Using Standing Surface Acoustic Waves". ACS Nano. American Chemical Society (ACS). 7 (4): 3306–3314. doi:10.1021/nn4000034. ISSN   1936-0851. PMC   3989880 . PMID   23540330.
  35. Lee, Jungwoo; Teh, Shia-Yen; Lee, Abraham; Kim, Hyung Ham; Lee, Changyang; Shung, K. Kirk (2009-08-17). "Single beam acoustic trapping". Applied Physics Letters. AIP Publishing. 95 (7): 073701. Bibcode:2009ApPhL..95g3701L. doi:10.1063/1.3206910. ISSN   0003-6951. PMC   2755305 . PMID   19798424.
  36. 1 2 Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Grinenko, Alon; Wilcox, Paul D.; Cochran, Sandy; Drinkwater, Bruce W. (2014-04-14). "Independent trapping and manipulation of microparticles using dexterous acoustic tweezers". Applied Physics Letters. 104 (15): 154103. Bibcode:2014ApPhL.104o4103C. doi: 10.1063/1.4870489 . ISSN   0003-6951.
  37. Baresch, Diego; Thomas, Jean-Louis; Marchiano, Régis (2016-01-11). "Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers" (PDF). Physical Review Letters. American Physical Society (APS). 116 (2): 024301. Bibcode:2016PhRvL.116b4301B. doi:10.1103/physrevlett.116.024301. ISSN   0031-9007. PMID   26824541. S2CID   206267537.
  38. 1 2 Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram (2015-10-27). "Holographic acoustic elements for manipulation of levitated objects". Nature Communications. 6 (1): 8661. Bibcode:2015NatCo...6.8661M. doi:10.1038/ncomms9661. ISSN   2041-1723. PMC   4627579 . PMID   26505138.
  39. Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye (2016). "Acoustic tweezers via sub–time-of-flight regime surface acoustic waves". Science Advances. American Association for the Advancement of Science (AAAS). 2 (7): e1600089. Bibcode:2016SciA....2E0089C. doi: 10.1126/sciadv.1600089 . ISSN   2375-2548. PMC   4956186 . PMID   27453940.
  40. Hefner, Brian T.; Marston, Philip L. (1999-11-23). "An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems". The Journal of the Acoustical Society of America. 106 (6): 3313–3316. Bibcode:1999ASAJ..106.3313H. doi: 10.1121/1.428184 . ISSN   0001-4966.
  41. Thomas, Jean-Louis; Marchiano, Régis (2003-12-11). "Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices". Physical Review Letters. 91 (24): 244302. Bibcode:2003PhRvL..91x4302T. doi:10.1103/PhysRevLett.91.244302. PMID   14683126.
  42. Volke-Sepúlveda, Karen; Santillán, Arturo O.; Boullosa, Ricardo R. (2008-01-16). "Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space". Physical Review Letters. 100 (2): 024302. Bibcode:2008PhRvL.100b4302V. doi:10.1103/PhysRevLett.100.024302. PMID   18232874.
  43. Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer (September 2016). "Holograms for acoustics". Nature. 537 (7621): 518–522. Bibcode:2016Natur.537..518M. doi:10.1038/nature19755. ISSN   1476-4687. PMID   27652563. S2CID   4403584.
  44. Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-chun; Zhang, Likun (2016-07-12). "Convert Acoustic Resonances to Orbital Angular Momentum". Physical Review Letters. 117 (3): 034301. Bibcode:2016PhRvL.117c4301J. doi: 10.1103/PhysRevLett.117.034301 . PMID   27472113.
  45. Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K. (2016-11-23). "Formation of high-order acoustic Bessel beams by spiral diffraction gratings". Physical Review E. 94 (5): 053004. arXiv: 1604.08353 . Bibcode:2016PhRvE..94e3004J. doi:10.1103/PhysRevE.94.053004. hdl: 2117/101154 . PMID   27967159. S2CID   27190492.
  46. Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis (2018-05-14). "Sharp acoustic vortex focusing by Fresnel-spiral zone plates". Applied Physics Letters. 112 (20): 204101. Bibcode:2018ApPhL.112t4101J. doi:10.1063/1.5029424. hdl: 2117/118785 . ISSN   0003-6951.
  47. Yeo, Leslie Y.; Friend, James R. (2014-01-03). "Surface Acoustic Wave Microfluidics". Annual Review of Fluid Mechanics. 46 (1): 379–406. Bibcode:2014AnRFM..46..379Y. doi:10.1146/annurev-fluid-010313-141418. ISSN   0066-4189.