Acromyrmex insinuator

Last updated

Acromyrmex insinuator
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Subfamily:
Tribe:
Genus:
Species:
A. insinuator
Binomial name
Acromyrmex insinuator

Acromyrmex insinuator is a social parasite of the closely related Acromyrmex echinatior . This specific parasite is of particular interest as it is an opportunity to study the development of social parasitism in the Attini tribe, and provides further evidence for Emery's rule, which theorizes social parasites among insects tend to be parasites of species or genera to which they are closely related to. [2]

Contents

Distribution

A. insinuator are found exclusively in Panama and were first discovered and studied in 1998. There have been a few laboratory studies, but the majority of data has been collected in nature through observation. [3]

Social parasitism

A. insinuator is a social parasite of Acromyrmex echinatior . Unlike the three of the four other known social parasites within the Atinni tribe (Acromyrmex (Pseudoatta) argentina argentina, Acromyrmex argentina platensis and Acromyrmex sp.) who show the extreme characteristics of social parasitism, A. insinuator is an example of the relatively early development of social parasitism as they closely resemble their host and produce a working caste. [3] This fact also leads to further data supporting Emery's rule.

A. insinuator will produce a minor working caste that tends to the fungal garden, which is unique in comparison to the other known social parasites in the Attini tribe. The A. insinuator queen and minor workers then goes on to consume the majority of the fungal garden while A. echinatior does all the scavenging required to maintain the fungal garden. However, there seems to be some sort of balance as the A. echinatior population does not suffer much from the presence of A. insinuator.[ citation needed ]

"Infection"

The method through which A. insinuator "infects" the A. echinatior colony is still undetermined. The time of A. insinuator's mating flight is near the same time of the mating flight of A. echinatior and therefore is reasonable to hypothesize that the recently inseminated A. insinuator queen joins the A. echinatior queen as she finds her new colony. [3] However, this does not rule out the possibility that A. insinuator queen joins an A. echinatior colony that has already been found (pleometrotic).[ citation needed ]

To remain undetected by their hosts, A. insinuator has evolved to appear "chemically insignificant" as opposed to using chemical mimicry. A study done in 2007 revealed that A. insinuator workers emitted far fewer hydrocarbons in total in comparison to A. echinatior. [4] Hydrocarbons with 29-35 carbons are used as recognition cues in A. echinatior. A decrease in the normal 29-35 carbon hydrocarbon range, while an increase in heavier 43-45 carbon hydrocarbon was discovered as the means through which A. insinuator workers remained chemically insignificant. [4] With fewer recognition hydrocarbons being produced, and heavier hydrocarbons masking any remaining identifying aspects, A. insinuator is able to successfully infiltrate an A. echinatior colony and remain undetected.[ citation needed ]

Physical comparison to host

In comparison to A. echinatior, the females of A. insinuator are on average smaller, males are on average larger and the minor workers are relatively indistinguishable from their host counterparts. [3] However, a more recent study has noted a decrease in the metapleural glands of the A. insinuator workers in comparison to their host. It is hypothesized this decrease in gland size represents the reduced importance for disease resistance mechanisms as the species becomes more reliant on their host's herd immunity, and more importantly - a decreased investment in the production of a worker caste. [5] This is also a common characteristic of social parasites in that they deviate further from their commonalities with their host species.[ citation needed ]

Impact on host

While the impact A. insinuator have on their host is not well documented, it makes sense to state that they have a negative effect on the fitness of A. echinatior. A. insinuator significantly decreases the amount of food from the fungal garden that is available and the amount of space in the colony. Both of these will have a negative impact on A. echinatior's fitness by placing stricter constraints on the population.[ citation needed ]

Colony reproduction and life cycle

Colony reproduction

Winged queen ants and males leave their respective colonies in large groups in a flight known as the revoada ("Flock" in English). Each female mates with multiple males to collect the 300 million sperm she needs to set up a colony. [6]

Eventually the queen will land and look for a suitable place to begin the new colony. Only about 2-3% of queens succeed in starting a long-term colony. [6]

Life cycle

General life cycle of ants General Ant life cycle.png
General life cycle of ants

A. insinuator follows the general life cycle of ants. They hatch from eggs as larvae that lack both eyes and legs. Depending on whether or not they were fertilized, they will be male or female. [7] With large appetites and the inability to forage for themselves, the larvae are completely reliant on the adult colony to provide them with food. For A. insinuator, the main source of food for the larvae is the hyphae from the fungal-garden. [8] Due to their large intake of food, larvae grow quickly and molt often. [9]

Once the larvae have grown to sufficient size, they undergo metamorphosis to a pupa. During this stage, reorganization takes place in which they develop into a primitive version of their adult form. [9]

Eventually the pupae emerge in their fully-grown adult forms and depending on the amount of food they received and their sex, they will either be designated as a Queen, Female or Male worker. [9]

Impact on humans and ecosystem

While A. insinuator specifically has no direct impact on humans, leaf-cutter ants overall are a significant problem in many areas of the world, but also vital in their ecosystems. As dominant herbivores, some colonies are cutting up to 13% of the standing vegetation in their territory per year. [10] The large size of the ant colonies (30-600m2) cause many issues ranging from crop devastation to reducing land surfaces useless as the ground beneath is unstable. [8]

However, the removal of these ants could significantly disturb local ecosystems due to their importance in soil enrichment, removal of plant material, and stimulation of new plant growth. [11]

Wolbachia

Like many arthropods, A. insinuator are infected with Wolbachia bacteria. Notably A. insinuator hold additional strains not found in their host. The effects of the Wolbachia strains in A. insinuator have not been documented. [12]

Unanswered questions

There is still a lot to learn from A. insinuator and many questions left to be answered. It is still undetermined how A. insinuator infects A. echinatior colonies or how deleterious the effects on their host A. insinuator are. Also the effect Wolbachia bacteria strains that are unique to A. insinuator may affect the species in comparison to their close relatives A. echinatior.[ citation needed ]

See also

Related Research Articles

<i>Atta</i> (ant) Genus of ants

Atta is a genus of New World ants of the subfamily Myrmicinae. It contains at least 17 known species.

<span class="mw-page-title-main">Leafcutter ant</span> Any of 47 species of leaf-chewing ants

Leafcutter ants, a non-generic name, are any of 47 species of leaf-chewing ants belonging to the two genera Atta and Acromyrmex. These species of tropical, fungus-growing ants are all endemic to South and Central America, Mexico, and parts of the southern United States. Leafcutter ants can carry twenty times their body weight and cut and process fresh vegetation to serve as the nutritional substrate for their fungal cultivates.

<span class="mw-page-title-main">Fungus-growing ants</span> Tribe of ants

Fungus-growing ants comprise all the known fungus-growing ant species participating in ant–fungus mutualism. They are known for cutting grasses and leaves, carrying them to their colonies' nests, and using them to grow fungus on which they later feed.

<span class="mw-page-title-main">Pharaoh ant</span> Species of ant

The pharaoh ant is a small (2 mm) yellow or light brown, almost transparent ant notorious for being a major indoor nuisance pest, especially in hospitals. A cryptogenic species, it has now been introduced to virtually every area of the world, including Europe, the Americas, Australasia and Southeast Asia. It is a major pest in the United States, Australia, and Europe.

<span class="mw-page-title-main">Army ant</span> Name used for several ant species

The name army ant (or legionary ant or marabunta) is applied to over 200 ant species in different lineages. Because of their aggressive predatory foraging groups, known as "raids", a huge number of ants forage simultaneously over a limited area.

<i>Atta sexdens</i> Species of ant

Atta sexdens is a species of leafcutter ant belonging to the tribe Attini, native to the New World, from the southern United States (Texas) to northern Argentina. They are absent from Chile. They cut leaves to provide a substrate for the fungus farms which are their principal source of food. Their societies are among the most complex found in social insects. A. sexdens is an ecologically important species, but also an agricultural pest. Other Atta species, such as Atta texana, Atta cephalotes and others, have similar behavior and ecology.

<span class="mw-page-title-main">Ant–fungus mutualism</span> Symbiotic relationship

The ant–fungus mutualism is a symbiosis seen between certain ant and fungal species, in which ants actively cultivate fungus much like humans farm crops as a food source. There is only evidence of two instances in which this form of agriculture evolved in ants resulting in a dependence on fungi for food. These instances were the attine ants and some ants that are part of the Megalomyrmex genus. In some species, the ants and fungi are dependent on each other for survival. This type of codependency is prevalent among herbivores who rely on plant material for nutrition. The microbes’ ability to convert the plant material into a food source accessible to their host makes them the ideal partner. The leafcutter ant is a well-known example of this symbiosis. Leafcutter ants species can be found in southern South America up to the United States. However, ants are not the only ground-dwelling arthropods which have developed symbioses with fungi. A mutualism with fungi is also noted in some species of termites in Africa.

<i>Phengaris rebeli</i> Species of butterfly

Phengaris rebeli, common name mountain Alcon blue, is a species of butterfly in the family Lycaenidae. It was first found and described in Styria, Austria, on Mount Hochschwab around 1700. Although it was initially classified as a subspecies of P. alcon, a European researcher, Lucien A. Berger, designated it as a separate species in 1946. Genetic similarities between P. rebeli and P. alcon have led many researchers to argue that the two are the same species and differences are due to intraspecific variation.

Myrmecia inquilina is a species of ant endemic to Australia in the subfamily Myrmeciinae, first discovered in 1955 and described by Athol Douglas and William Brown Jr. in 1959. These ants are large, measuring 21.4 millimetres (0.84 in). During the time of its discovery, Douglas and Brown announced M. inquilina as the first social parasite among the primitive subfamilies, and today it is one of the two known Myrmecia species to have no worker caste. Two host species are known, Myrmecia nigriceps and Myrmecia vindex. Aggression between M. inquilina and its host species does not occur, and colonies may only produce M. inquilina brood months after the inquiline queens begin to lay their eggs. Queens eat the colony brood or trophic eggs, and other Myrmecia species may kill M. inquilina queens if they reject them. Due to its restricted distribution and threats to its habitat, the ant is "vulnerable" according to the IUCN Red List.

<i>Acromyrmex</i> Genus of ants

Acromyrmex is a genus of New World ants of the subfamily Myrmicinae. This genus is found in South America and parts of Central America and the Caribbean Islands, and contains 33 known species. Commonly known as "leafcutter ants" they comprise one of the two genera of advanced attines within the tribe Attini, along with Atta.

<i>Mycocepurus smithii</i> Species of ant

Mycocepurus smithii is a species of fungus-growing ant from Latin America. This species is widely distributed geographically and can be found from Mexico in the north to Argentina in the south, as well as on some Caribbean Islands. It lives in a variety of forested habitats and associated open areas. Two studies published in 2009 demonstrated that some populations of the species consist exclusively of females which reproduce via thelytokous parthenogenesis. A detailed study found evidence of sexual reproduction in some populations in the Brazilian Amazon. Accordingly, M. smithii consists of a mosaic of sexually and asexually reproducing populations. In asexual populations all ants in a single colony are female clones of the queen. Inside the colony, the ants cultivate a garden of fungus grown with pieces of dead vegetable matter, dead insects, and insect droppings.

Acromyrmex ameliae is a species of New World ants of the subfamily Myrmicinae. This species is from one of the two genera of advanced fungus-growing ants within the tribe Attini. It is found in the wild naturally in South America in Minas Gerais, Brasil.

<i>Acromyrmex echinatior</i> Species of ant

Acromyrmex echinatior is a species of New World ants of the subfamily Myrmicinae of the genus Acromyrmex. It is found in the wild naturally from Mexico to Panama.

<i>Cyphomyrmex</i> Genus of ants

Cyphomyrmex is a genus of fungus-growing ants found primarily in South and Central America. However, some species do come up to the southern portion of North America. They grow a variety of fungi in the tribe Leucocoprineae. Most fungal gardens are grown in small nodules, some species to cultivate entire mycelium, though. Colonies are monogynous and are relatively small with about 100 workers on average.

<i>Dolichovespula adulterina</i> Species of wasp

Dolichovespula adulterina is a species of parasitic social wasp found in the Palearctic region. D. adulterina feeds on a variety of foods, including insects, spiders, arthropods, meat, molluscs, fruit, nectar, and larval secretions. D. adulterina was formerly considered to be synonymous with D. arctica from the Holarctic region, but more recent research indicates that D. arctica is a separate species.

<i>Polistes atrimandibularis</i> Species of wasp

Polistes atrimandibularis is one of three obligate social parasites among the Polistes wasps found in Europe. Of the four social paper wasp parasite species known, it is the smallest. It parasitizes multiple species such as P. dominula, P. nimpha, P. associus, P. gallicus, and P. biglumis. Females of P. atrimandibularis are unable to build a nest or produce workers, and therefore rely entirely on the host colony.

<i>Polistes austroccidentalis</i> Species of wasp

Polistes austroccidentalis is a kleptoparasitic paper wasp that is found in several regions of high altitude in Europe, and until 2017 was universally mistakenly referred to as Polistes semenowi, which is instead the correct name of the species formerly known as "Polistes sulcifer". As one of only four obligate parasites in the subgenus Polistes, it uses the nests of other paper wasps to rear its young. To evade detection by the host nest, P. austroccidentalis employs mimicry by adjusting its cuticular hydrocarbons to match those of the host. Once the host nest has been infiltrated, the parasitic female physically attacks the host queen to subdue her and become the colony's new queen. P. austroccidentalis displays several morphological adaptations for parasitism such as increased mandible size and an enlarged Van der Vecht's organ. This species is unusual because it does not have the ability to produce workers and is only able to produce individuals who have the capacity to reproduce.

<i>Polistes biglumis</i> Species of wasp

Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.

<span class="mw-page-title-main">Social immunity</span> Antiparasite defence mounted for the benefit of individuals other than the actor

Social immunity is any antiparasite defence mounted for the benefit of individuals other than the actor. For parasites, the frequent contact, high population density and low genetic variability makes social groups of organisms a promising target for infection: this has driven the evolution of collective and cooperative anti-parasite mechanisms that both prevent the establishment of and reduce the damage of diseases among group members. Social immune mechanisms range from the prophylactic, such as burying beetles smearing their carcasses with antimicrobials or termites fumigating their nests with naphthalene, to the active defenses seen in the imprisoning of parasitic beetles by honeybees or by the miniature 'hitchhiking' leafcutter ants which travel on larger worker's leaves to fight off parasitoid flies. Whilst many specific social immune mechanisms had been studied in relative isolation, it was not until Sylvia Cremer et al.'s 2007 paper "Social Immunity" that the topic was seriously considered. Empirical and theoretical work in social immunity continues to reveal not only new mechanisms of protection but also implications for understanding of the evolution of group living and polyandry.

<i>Niphanda fusca</i> Species of butterfly

Niphanda fusca is a parasitic butterfly primarily found in East Asian countries such as Japan and Korea. It is a "cuckoo-type" parasite of the ant Camponotus japonicus. It utilizes chemical mimicry to trick the host worker ants into adopting it while it is a third-instar caterpillar. From there, it is fed mouth-to-mouth by the worker ants as though it were one of their own young.

References

  1. "Species: Acromyrmex insinuator". AntWeb. 2010-06-30. Retrieved 2014-04-05.
  2. Deslippe, Richard (2010). "Social Parasitism in Ants". Nature Education Knowledge. 3 (10): 27. Retrieved 2014-08-14.
  3. 1 2 3 4 Schultz, TR; Bekkevold D; Boomsma JJ (1998). "Acromyrmex insinuator new species: an incipient social parasite of fungus-growing ants". Insectes Sociaux. 45 (4): 457–471. CiteSeerX   10.1.1.569.6661 . doi:10.1007/s000400050101. S2CID   24823552.
  4. 1 2 Lambardi, Duccio; Dani Francesca R., Turillazzi Stefano; et al. (2007). "Chemical mimicry in an incipient leaf-cutting ant social parasite". Behavioral Ecology and Sociobiology. 61 (6): 843–851. doi:10.1007/s00265-006-0313-y. S2CID   6970749.
  5. Sumner, S; Hughes WOH; Boomsma JJ (2003). "Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite". Behavioral Ecology and Sociobiology. 54 (3): 256–263. doi:10.1007/s00265-003-0633-0. S2CID   9136539.
  6. 1 2 Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press, p.  298, ISBN   978-0-313-33922-6 .
  7. Cowan, David; Stahlhut Julie (2004-05-25). "Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination". PNAS. 101 (28): 10374–10379. doi: 10.1073/pnas.0402481101 . PMC   478579 . PMID   15232002.
  8. 1 2 Hölldobler, Bert (1990). The Ants . Harvard University Press. p.  598. ISBN   978-0674040755.
  9. 1 2 3 Holbrook, Tate (2009-12-17). "Face to Face with Ants". ASU - Ask A Biologist. Retrieved 2014-04-05.
  10. Wirth, Rainer; Meyer Sebastian; et al. (2007). "Increasing densitites of leaf-cutting ants with proximity to the edge in a Brazilian Atlantic forest". Journal of Tropical Ecology. 23 (4): 501–505. doi:10.1017/S0266467407004221. S2CID   86075859.
  11. Williams, DF (1994). Exotic Ants: Biology, Impact, and Control of Introduced Species. Boulder, CO: Westview Press. pp. 206–219.
  12. Borm, S Van; Wenseleers T; Billen J; Boomsma JJ (2003). "Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants". Molecular Phylogenetics and Evolution. 26 (1): 102–109. doi:10.1016/S1055-7903(02)00298-1. PMID   12470942.