Adam Tauman Kalai

Last updated
Adam Tauman Kalai
Adam Tauman Kalai.jpg
NationalityAmerican
Alma mater Harvard University
Carnegie Mellon University
Scientific career
Fields Computer Science, Artificial Intelligence
Institutions Toyota Technological Institute at Chicago
Georgia Tech
Microsoft Research
OpenAI
Doctoral advisor Avrim Blum

Adam Tauman Kalai is an American computer scientist who specializes in machine learning and recently moved to OpenAI [1] [2] after being a Senior Principal Researcher at Microsoft Research New England [3] [4] .

Contents

Education and career

Kalai graduated from Harvard University in 1996 and received a PhD from Carnegie Mellon University in 2001, where he worked under doctoral advisor Avrim Blum. He did his postdoctoral study at the Massachusetts Institute of Technology before becoming a faculty member at the Toyota Technological Institute at Chicago and then the Georgia Institute of Technology. He joined Microsoft Research in 2008 [4] and subsequently moved to OpenAI in 2023. [1] [2]

Contributions

Kalai is known for his algorithm for generating random factored numbers (see Bach's algorithm), for efficiently learning learning mixtures of Gaussians, for the Blum-Kalai-Wasserman algorithm for learning parity with noise, and for the intractability of the folk theorem in game theory.

More recently, Kalai is known for identifying and reducing gender bias in word embeddings, which are a representation of words commonly used in AI systems [3] [5] and for his work on hallucinations in large language models. [1]

Personal life

Kalai is the son of professor Ehud Kalai and is married to fellow researcher Yael Tauman Kalai. [6] [7]

Related Research Articles

Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems. It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. Such machines may be called AIs.

<span class="mw-page-title-main">Ron Rivest</span> American cryptographer

Ronald Linn Rivest is an American cryptographer and computer scientist whose work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. He is an Institute Professor at the Massachusetts Institute of Technology (MIT), and a member of MIT's Department of Electrical Engineering and Computer Science and its Computer Science and Artificial Intelligence Laboratory.

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. Quick progress in the field of deep learning, beginning in 2010s, allowed neural networks to surpass many previous approaches in performance.

Microsoft Research (MSR) is the research subsidiary of Microsoft. It was created in 1991 by Richard Rashid, Bill Gates and Nathan Myhrvold with the intent to advance state-of-the-art computing and solve difficult world problems through technological innovation in collaboration with academic, government, and industry researchers. The Microsoft Research team has more than 1,000 computer scientists, physicists, engineers, and mathematicians, including Turing Award winners, Fields Medal winners, MacArthur Fellows, and Dijkstra Prize winners.

The ethics of artificial intelligence covers a broad range of topics within the field that are considered to have particular ethical stakes. This includes algorithmic biases, fairness, automated decision-making, accountability, privacy, and regulation. It also covers various emerging or potential future challenges such as machine ethics, lethal autonomous weapon systems, arms race dynamics, AI safety and alignment, technological unemployment, AI-enabled misinformation, how to treat certain AI systems if they have a moral status, artificial superintelligence and existential risks.

Music and artificial intelligence (AI) is the development of music software programs which use AI to generate music. As with applications in other fields, AI in music also simulates mental tasks. A prominent feature is the capability of an AI algorithm to learn based on past data, such as in computer accompaniment technology, wherein the AI is capable of listening to a human performer and performing accompaniment. Artificial intelligence also drives interactive composition technology, wherein a computer composes music in response to a live performance. There are other AI applications in music that cover not only music composition, production, and performance but also how music is marketed and consumed. Several music player programs have also been developed to use voice recognition and natural language processing technology for music voice control. Current research includes the application of AI in music composition, performance, theory and digital sound processing.

Parity learning is a problem in machine learning. An algorithm that solves this problem must find a function ƒ, given some samples (xƒ(x)) and the assurance that ƒ computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input. The problem is easy to solve using Gaussian elimination provided that a sufficient number of samples (from a distribution which is not too skewed) are provided to the algorithm.

<span class="mw-page-title-main">Andrew Ng</span> American artificial intelligence researcher

Andrew Yan-Tak Ng is a British-American computer scientist and technology entrepreneur focusing on machine learning and artificial intelligence (AI). Ng was a cofounder and head of Google Brain and was the former Chief Scientist at Baidu, building the company's Artificial Intelligence Group into a team of several thousand people.

<span class="mw-page-title-main">Constantinos Daskalakis</span> Greek computer scientist

Constantinos Daskalakis is a Greek theoretical computer scientist. He is a professor at MIT's Electrical Engineering and Computer Science department and a member of the MIT Computer Science and Artificial Intelligence Laboratory. He was awarded the Rolf Nevanlinna Prize and the Grace Murray Hopper Award in 2018.

DeepMind Technologies Limited, also known by its trade name Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014 and merged with Google AI's Google Brain division to become Google DeepMind in April 2023. The company is based in London, with research centres in Canada, France, Germany, and the United States.

<span class="mw-page-title-main">Mustafa Suleyman</span> British entrepreneur and activist

Mustafa Suleyman is a British artificial intelligence (AI) entrepreneur. He is the CEO of Microsoft AI, and the co-founder and former head of applied AI at DeepMind, an AI company acquired by Google. After leaving DeepMind, he co-founded Inflection AI, a machine learning and generative AI company, in 2022.

<span class="mw-page-title-main">Yoshua Bengio</span> Canadian computer scientist

Yoshua Bengio is a Canadian computer scientist, most noted for his work on artificial neural networks and deep learning. He is a professor at the Department of Computer Science and Operations Research at the Université de Montréal and scientific director of the Montreal Institute for Learning Algorithms (MILA).

<span class="mw-page-title-main">Yael Tauman Kalai</span> Cryptographer and theoretical computer scientist

Yael Tauman Kalai is a cryptographer and theoretical computer scientist who works as a Senior Principal Researcher at Microsoft Research New England and as an adjunct professor at MIT in the Computer Science and Artificial Intelligence Lab.

Animashree (Anima) Anandkumar is the Bren Professor of Computing at California Institute of Technology. Previously, she was a senior director of Machine Learning research at NVIDIA and a principal scientist at Amazon Web Services. Her research considers tensor-algebraic methods, deep learning and non-convex problems.

ACM Conference on Fairness, Accountability, and Transparency is a peer-reviewed academic conference series about ethics and computing systems. Sponsored by the Association for Computing Machinery, this conference focuses on issues such as algorithmic transparency, fairness in machine learning, bias, and ethics from a multi-disciplinary perspective. The conference community includes computer scientists, statisticians, social scientists, scholars of law, and others.

Maria-Florina (Nina) Balcan is a Romanian-American computer scientist whose research investigates machine learning, algorithmic game theory, theoretical computer science, including active learning, kernel methods, random-sampling mechanisms and envy-free pricing. She is an associate professor of computer science at Carnegie Mellon University.

<span class="mw-page-title-main">Deborah Raji</span> Nigerian-Canadian computer scientist and activist

Inioluwa Deborah Raji is a Nigerian-Canadian computer scientist and activist who works on algorithmic bias, AI accountability, and algorithmic auditing. Raji has previously worked with Joy Buolamwini, Timnit Gebru, and the Algorithmic Justice League on researching gender and racial bias in facial recognition technology. She has also worked with Google’s Ethical AI team and been a research fellow at the Partnership on AI and AI Now Institute at New York University working on how to operationalize ethical considerations in machine learning engineering practice. A current Mozilla fellow, she has been recognized by MIT Technology Review and Forbes as one of the world's top young innovators.

Diyi Yang is a Chinese computer scientist and assistant professor of computer science at Stanford University. Her research combines linguistics and social sciences with machine learning to build more socially-aware language technologies, including user-centered text generation, and NLP for limited data settings like dialectal variation and low-resourced languages.

Sébastien Bubeck is a French-American computer scientist and mathematician. He is currently Microsoft's Vice President of Applied Research and leads the Machine Learning Foundations group at Microsoft Research Redmond. Bubeck was formerly professor at Princeton University and a researcher at the University of California, Berkeley. He is known for his contributions to online learning, optimization and more recently studying deep neural networks, and in particular transformer models.

References

  1. 1 2 3 Levy, Steven (January 5, 2024), In Defense of AI Hallucinations , retrieved 2024-03-19
  2. 1 2 Adam Tauman Kalai , retrieved 2024-03-19
  3. 1 2 Pinkerton, Byrd (August 12, 2016), He's Brilliant, She's Lovely: Teaching Computers To Be Less Sexist, National Public Radio (NPR), retrieved 2019-01-28
  4. 1 2 Artificial Intelligence and Statistics Conference, 2016, retrieved 2019-01-28
  5. Gholipour, Bahar (March 10, 2017), Algorithms Learn From Us, and We Can Be Better Teachers, NBC, retrieved 2019-09-01
  6. Knies, Rob (May 14, 2009), New England Researcher Finds Her Bliss, Microsoft
  7. Weinreb, Gali (August 20, 2023), "Who'll blink first? The mathematics of politics", Globes