Adhesive bonding

Last updated

Adhesive bonding is a joining technique used in the manufacture and repair of a wide range of products. Along with welding and soldering, adhesive bonding is one of the basic joining processes. In this technique, components are bonded together using adhesives. The broad range of types of adhesives available allows numerous materials to be bonded together in products as diverse as vehicles, mobile phones, personal care products, buildings, computers and medical devices.

Contents

History

An adhesive can be defined as a substance that causes two surfaces to stick together. By this definition, the earliest "adhesive" could be considered to have been developed three billion years ago, when primordial cells produced a tacky outer membrane allowing them to stick to adjacent cells. The first use of adhesives by humans can be dated to around 220,000 B.C., when tar from birch tree bark was used to glue stone arrowheads to a shaft. [1]

Basics

Universal adhesive Lijm.jpg
Universal adhesive

According to the definition of EN 923 Archived 2019-05-09 at the Wayback Machine : "Adhesives. Terms and definitions", adhesives are non-metallic substances capable of joining materials by surface bonding (adhesion), with a bond possessing adequate internal strength (cohesion)". The adhesive forms the connecting element between the two joined parts, which would not stick together without it. Adhesives can be grouped by chemistry, by application, or by the reaction mechanism.

Adhesion

According to IUPAC, adhesion is the "process of attachment of a substance to the surface of another substance". Interactions between the adhesive and substrate have a very short range of less than one nanometre. Therefore, good wetting of the materials to be joined by the adhesive in its liquid state is required to produce a high quality bond. In addition to the wetting ability, the adhesive and substrate must have compatible molecular groups so that interaction between the adhesive and substrate can take place and thus achieve adhesion.

The adhesive forces are usually based on physical interactions, for example, such as those between polar or polarisable groups, on hydrogen bonds, or van der Waals forces. When bonding plastics, in particular with solvent-based adhesives, diffusion processes can also play a role. In this case, the plastic at the substrate surface is dissolved by the solvent contained in the adhesive. This leads to an increased mobility of the plastic's polymer chains, which in turn allows penetration by those of the adhesive. Ultimately, additional interactions occur between the polymer chains of the adhesive and the substrate. After evaporation of the solvent, a solid compound is formed. Chemical bonds are also important in certain adhesive / substrate combinations, for example when bonding glass using silicone adhesives, wood using polyurethane adhesives and aluminium using epoxy adhesives. Chemical bonding leads to significantly higher adhesion than physical bonding. In addition, penetration of the liquid adhesive into undercuts may provide addition adhesion after it has hardened.

Achieving adhesion between the adhesive and substrate requires not only an adhesive of suitable composition for the substrate, but also places high demands on the substrate surface. Due to the short range of the adhesion forces, the nature of the surface layer of the substrate is crucial. It must be sufficiently firmly connected to the body of the substrate. For example, many adhesives adhere well to a corroded steel surface. However, the corrosion layer – the rust – is not firmly connected to the substrate. Under load, failure may occur in the corroded material or between the rust layer and the uncorroded steel. The same applies to coated items. The adhesive must build adhesion to the coating. The coating in turn must be sufficiently firmly connected to the substrate.

Likewise, contaminants, especially those which, due to their low surface tension, counteract wetting by the adhesive (for example, oils, release agents, etc.) hinder the adhesion interaction. Contaminants form, as it were, a barrier between the adhesive and the substrate which cannot be bridged by the adhesion forces due to their short reach.

Therefore, contaminants usually need to be removed before adhesion. Some special adhesives show a degree of compatibility with certain oils. They are able to absorb certain oils during the curing of the adhesive, which takes place at elevated temperatures, and thus to remove them from the boundary layer between the adhesive and substrate. Such adhesives are used for example in automotive body shops. They allow the gluing of sheet metal parts with corrosion protection and drawing oils without previous cleaning; The curing of the adhesive takes place in the furnaces used subsequently for hardening the lacquer at temperatures between approximately 150 and 200 °C. [2]

Pre-treatment

Pre-treatment can be used to modify surfaces in a targeted way and thus make them more adhesive. [3] In addition to coating the substrates with an adhesion promoter (primer) to enable good adhesion, surfaces can also be modified by various methods to prepare them for gluing. The most common surface pre-treatment methods are listed in the adjacent figure.

The most important processes for surface pre-treatment (after H. Gleich) Surface treatment procedure.jpg
The most important processes for surface pre-treatment (after H. Gleich)

The selection of the pre-treatment process is application-specific, taking into account

The selection should be validated through appropriate testing.

Hardening of the glue – cohesion

As the adhesive solidifies, its internal strength, the cohesion, increases. The cohesion is also based on physical interactions, in this case between the adhesive polymers. In the case of adhesives which cure by a chemical reaction, i.e. the formation of polymers by a chemical reaction of the adhesive constituents, the resulting chemical bonds play an important role.

Properties of a bond

The cohesive and adhesive properties of the adhesive in combination with the substrate determine the properties of a bond. While the adhesion properties substantially determine whether an adhesive adheres to a particular substrate, the cohesive property contributes greatly to the mechanical properties of the bond, particularly the load-bearing deformation behaviour.

Adhesive bonds are not only subject to certain aging characteristics, but their properties are dependent on the particular environmental conditions, in particular the temperature. Also, both the adhesion-forming interactions between adhesive and substrate, as well as the inter-intramolecular interactions causing the cohesion, can be adversely affected by external influences (including temperature, humidity, chemicals, radiation, mechanical stress). The degree of impairment depends on the nature of the conditions and their duration; this process is called aging. Therefore, when planning a bonding operation, in addition to the actual environmental conditions, their possible long-term effects on the adhesive and substrate must also be taken into account.

Due to the large number of parameters that can influence bonding and the partly conflicting requirements for different adhesive bonds, it is clear that the so-called "all-purpose adhesive" cannot exist.

Adhesive selection

Criteria to consider when selecting adhesives Important criteria to consider when selecting adhesives.jpg
Criteria to consider when selecting adhesives

The selection of a suitable adhesive for a particular application should be based on a specific requirement profile. This requirement profile lists all immediate, verifiable requirements for the component to be bonded and, as a result, for the bond and the adhesive. It is possible to distinguish between requirements which must be met and those whose fulfilment is advantageous but not absolutely necessary. In addition, specifications derived from the bonding process, including those from upstream and downstream process steps, must be taken into account. The diagram above provides a summary of the most important parameters to take into account when choosing adhesives.

Advantages and disadvantages of gluing

As with any joining technique, bonding technology not only offers a wide range of possibilities and many advantages, but also has limitations that must be considered when planning and designing adhesive processes.

Advantages of gluing

The main advantages are:

Disadvantages

There are many types of adhesive available and they are often developed with a specific use in mind. As a result, what could be perceived as a disadvantage of a particular adhesive type in some applications could be its advantage in another. Therefore, it is essential to use a glue that appropriate for the application at hand. Characteristics of adhesives that can be disadvantages in certain situations include:

Comparison of joining techniques

Comparison of joining techniques Comparison of joining techniques.jpg
Comparison of joining techniques

Adhesive bonding may have advantages comparison with other joining methods for specific applications, as shown in the adjacent table with the example of joining metals in automotive body construction.

The disadvantage of the lack of instantaneous bonding exhibited by many adhesives can be overcome by using a suitable fast-curing adhesive or a combination of a standard adhesive with a second, fast-curing adhesive (e.g. double-sided adhesive tape) or with another joining method, such as spot welding, rivets, screws, or clinching / press joining. In the case of these processes, which are referred to as hybrid joining, because of the distributed connection of the substrates between the other joining points, there is a significant reduction in the stress peaks at precisely these joining points and instantaneous strength is achieved.

Applications (selection)

Modern adhesives have become indispensable in the today's world. They can be found in everyday and specialist products. Here are some examples from different areas:

Automotive industry

The production of modern vehicles would not be possible without adhesives. Here are two examples:

Vehicle windscreens

Today's windscreens are made of laminated safety glass, which consists of two or more pieces of glass bonded to a tear-resistant, viscous, transparent hot-melt adhesive film. This film ensures among other things that the windscreen remains intact as a unit after fracture, thus minimising the risk of injury from glass fragments. Furthermore, while windscreens were previously attached to the bodywork by means of a rubber seal, today they are firmly glued and form an integral part of the bodywork. This is only possible through the use of an adhesive with the correct mechanical properties for the application; on the one hand, the adhesive offers sufficient strength to secure the windscreen to the bodywork and, on the other hand, it is sufficiently elastic to compensate for relative movements between the bodywork and windscreen during driving, thus preventing breakage. Since the glued-in windshield contributes to the rigidity of the vehicle, thinner metal sheets can be used in certain places, thereby reducing the vehicle's weight and ultimately its energy consumption.

Vehicle electronics

The advent of more and more electronics in motor vehicles, from engine management systems, safety components such as ABS and ESP and driver assistance systems, to comfort-enhancing features, would not be possible without modern adhesives. Due to the small size of the control devices, sensors, cameras, etc., the capabilities of conventional joining technologies are soon exceeded. Therefore, the components used today are predominantly bonded using adhesives.

In order to ensure the proper functioning of the control units and associated sensors, the electronics must be safely protected from external influences, such as moisture, salt, fuel and other automotive fluids. Many sensors are therefore encapsulated or protected by securely fitting housing. In both cases, adhesives are used. In the case of component casting, bubble-free potting must be achieved, and the hardened potting material must have a certain mechanical stability in order to withstand the abrasive impact of sand and gravel while driving. On the other hand, it must have sufficient elasticity to avoid shock-like thermal cycling due to different thermal expansion behaviours of the electronic components, which could lead to leaks or the rupture of solder joints and thus to failure.

Due to the steadily increasing number of electronic components, the risk of interference due to inadequate electromagnetic compatibility (EMC) also increase. To ensure adequate EMC, metal housing is used in which the lid is glued by means of special fillers containing adhesives. This ensures not only the required tightness but also the required EMC.

Semiconductor wafers

Adhesive bonding has the advantage of relatively low bonding temperature as well as the absence of electric voltage and current. Based on the fact that the wafers are not in direct contact, this procedure enables the use of different substrates, e.g. silicon, glass, metals and other semiconductor materials. A drawback is that small structures become wider during patterning which hampers the production of an accurate intermediate layer with tight dimension control. [6] Further, the possibility of corrosion due to out-gassed products, thermal instability and penetration of moisture limits the reliability of the bonding process. [7] Another disadvantage is the missing possibility of hermetically sealed encapsulation due to higher permeability of gas and water molecules while using organic adhesives. [8]

Medicine and medical technology

In medicine and medical technology, adhesives play an increasingly important role. The simple plaster for example has to have good adhesion to a variety of skin types, but also be as painless as possible to remove. In addition, transdermal patches deliver medication over a longer period of time through the skin into the bloodstream, others are used for the long-term attachment of sensors used for example for the continuous measurement of blood sugar levels. These patches must stick securely for up to 14 days, sometimes under extreme conditions, for example, when showering, swimming, exercising or in a sauna. It goes without saying that these adhesives must be skin-friendly. The adhesives used are special pressure-sensitive adhesives based on acrylates or synthetic rubber.

In surgery, adhesives are used in the treatment of certain surgical wounds. These adhesives are usually based on fibrin, the natural adhesive substance that causes blood to clot when bleeding. Since fibrin occurs naturally in the body, it has the advantage that the adhesive is not rejected by the body. In addition, over time it degrades naturally by itself, which eliminates the need for elaborate after-treatment such as removing stitches. This property is especially important for surgery on the heart or the gastrointestinal tract.

Innovative adhesives are also used in dentistry. They are not only used for the filling of caries and the production of dentures but are also invaluable in orthodontics. The brackets through which the wires of a dental brace are threaded are attached to the teeth by means of special adhesives. On the one hand, the brackets should be held securely in the mouth's moist, warm environment, but later be able to be removed without residue.

Adhesives are also now indispensable in medical device technology. For example, needles are usually glued to syringes and stainless-steel cannula must be securely connected to their plastic adapter. Due to the high production volumes, short cycle times are required. Often, light-curing adhesives are used, which attain sufficient strength after a few seconds of irradiation with light of a certain wavelength and are able to survive the subsequent sterilisation process, during which they can be subjected to superheated steam, ethylene oxide or gamma radiation.

The manufacture of endoscopes, where tension-free attachment of lenses with smaller and smaller dimensions is required, is another good example of the performance capabilities of modern adhesives. Here, in addition to bond strength, it is important to balance the different thermal expansions of the substrates. In this case, it is also important to prevent voltages, which could affect the image quality, from being transmitted from the lens holder to the lens.

Home appliance industry

Adhesives are also widely used in the production of household appliances, fulfilling a range of different bonding requirements. For example, temperature-stable silicone adhesives are used in the production of ceramic hobs or sealing windows in oven doors. The compounds must be able to withstand temperatures of up to 250 °C and, of course, must never release any pollutants. On the other hand, membrane keyboards of control panels as well as the label plates for conventional control panels are attached to the devices such as ovens, refrigerators, washing machines and dryers by means of double-sided adhesive tapes.

Adhesives are also frequently used in the manufacture of small electrical appliances. For example, in coffee machines plastic handles are often glued to the glass jugs. Compared to fastening by means of a metal clamping ring, gluing offers advantages in the manufacturing process by avoiding breaking the jugs. Another advantage in use is that, with a metal clamping ring, dirt particles and moisture can accumulate between the jug body and ring, leading to corrosion of the clamping ring, rendering it unsightly. With adhesive fixing of the handle, this phenomenon is eliminated. Adhesives based on polyurethane or silicone are used, either as a two-component or moisture-curing system. The adhesive used must, among other things, have enough strength, be dishwasher safe, and have sufficient elasticity to compensate for the different thermal expansion behaviour of glass and the plastic material of the handle to prevent glass breakage, and it has to maintain this performance over the entire life of the coffee machine, even at temperatures up to 100 °C.

In addition, the production of multifunction devices, such as those that facilitate cooking, stirring, kneading, mixing and grinding, would be impossible in their current form without modern adhesives. The heart of such devices is often an extremely powerful, brushless electric motor. On the one hand it needs high speed capabilities to grind for example nuts, and on the other hand it needs high torque capabilities at low speeds to knead dough. Since some of these devices suitable for use in cooking, a corresponding temperature resistance is required. Light-curing adhesives ensure that the rotor and stator, the two main components of the motor, form a robust unit. The curing of the adhesive takes place within a very short time, so that high quantities of the device can be produced cost-effectively. During curing, the photoinitiators contained in the adhesive form highly reactive molecules under the influence of light, which facilitates the chemical curing process of the adhesive resin.

Packaging industry

Most packaging for frozen and microwaveable foodstuffs consists of biodegradable film composites. Of course, the adhesives used to make these film composites must also be biodegradable. This is achieved by the use of molecules of naturally occurring polymers, such as cellulose and starch, which can be degraded to water, carbon dioxide and biomass by microorganisms using enzymes. [9]

Postage stamps

The Penny Black was the world's first adhesive postage stamp used in a public postal system. It was first issued in Great Britain on 1 May 1840, but was not valid for use until 6 May. The introduction of adhesive postage stamps is closely associated with developments in adhesives technology. At that time, stamp adhesives consisted of naturally occurring raw materials such as molasses, potato starch and occasionally fish glue, but these performed poorly. So, the stamps either stuck together or fell off prematurely and emitted an unpleasant odour. In addition, the stamps had to be moistened before fixing, which was often done by licking. Due to the unpleasant taste, this was rather unpopular. With the development of synthetic adhesives in the middle of the 20th century, the use of odourless adhesives with no unpleasant taste, made of polyvinyl acetate or polyvinyl alcohol, was adopted. This also eliminated the problem of stamps sticking together and premature falling off. Today, more and more stamps are offered which do not require moistening. These self-adhesive stamps use a pressure-sensitive adhesive and need only be removed from their non-stick backing paper before being glued to a letter.

Adhesive technical standardisation, education and training

With the growing use of bonding technology in industry and professional trades, and the resulting, increasing demands on the quality and durability of glued products, comprehensive national and international standards have been developed for, amongst other things, the characterisation, classification and testing of adhesives and adhesive bonds.

Gluing forms only part of the occupational training in a few occupations, and in this case only the bonding processes relevant to the respective profession are usually taught. As a result, there was a need for professional training for personnel involved in the development, production and repair of glued products. This need was met through the introduction of a three-level training concept. Training is available as a bonding practitioner, bonding specialist or bonding engineer, as laid down in guidelines for the EWF (European Federation for Welding, Joining and Cutting).

In addition, trade associations, such as FEICA, the European Association of the Adhesive and Sealant Industry, are working with supply chain stakeholders to develop and harmonise standards and test methods, as well as encourage best practices in health, safety and the environment.

Literature

Related Research Articles

<span class="mw-page-title-main">Adhesive</span> Non-metallic material used to bond various materials together

Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Label</span> Material affixed to a container or article with printed information

A label is a piece of paper, plastic film, cloth, metal, or other material affixed to a container or product, on which is written or printed information or symbols about the product or item. Information printed directly on a container or article can also be considered labelling.

<span class="mw-page-title-main">Primer (paint)</span> Preparatory coating put on materials before painting

A primer or undercoat is a preparatory coating put on materials before painting. Priming ensures better adhesion of paint to the surface, increases paint durability, and provides additional protection for the material being painted.

<span class="mw-page-title-main">Hot-melt adhesive</span> Glue applied by heating

Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

<span class="mw-page-title-main">Silicone rubber</span> Elastomer

Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments and temperatures from −55 to 300 °C while still maintaining its useful properties. Due to these properties and its ease of manufacturing and shaping, silicone rubber can be found in a wide variety of products, including voltage line insulators; automotive applications; cooking, baking, and food storage products; apparel such as undergarments, sportswear, and footwear; electronics; medical devices and implants; and in home repair and hardware, in products such as silicone sealants.

Wood glue is an adhesive used to tightly bond pieces of wood together. Many substances have been used as glues. Traditionally animal proteins like casein from milk or collagen from animal hides and bones were boiled down to make early glues. They worked by solidifying as they dried. Later, glues were made from plant starches like flour or potato starch. When combined with water and heated, the starch gelatinizes and forms a sticky paste as it dries. Plant-based glues were common for books and paper products, though they can break down more easily over time compared to animal-based glues. Modern wood glues are largely synthetic, made from petroleum-derived plastics like polyvinyl acetate (PVA). PVA glues are moisture resistant while also being flexible when dry. Epoxy resins are also popular for their strength and water resistance. Some resins used in producing composite wood products contain formaldehyde. As of 2021, “the wood panel industry uses almost 95% of synthetic petroleum-derived thermosetting adhesives, mainly based on urea, phenol, and melamine, among others”.

Conformal coating is a protective, breathable coating of thin polymeric film applied to printed circuit boards (PCB). It is named as such because it conforms to the contours of the PCB. Conformal coatings are typically applied at 25–250 μm to the electronic circuitry and provide protection against moisture, dust, chemicals, and temperature extremities. More recently, conformal coatings have been used to reduce the formation of whiskers, and can also prevent current bleed between closely positioned components.

<span class="mw-page-title-main">Pressure-sensitive adhesive</span> Type of non reactive adhesive

Pressure-sensitive adhesive is a type of nonreactive adhesive which forms a bond when pressure is applied to bond the adhesive with a surface. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, glue dots, stickers, sticky note pads, automobile trim, and a wide variety of other products.

<span class="mw-page-title-main">Sealant</span> Substance used to block the passage of fluids through openings

Sealant is a substance used to block the passage of fluids through openings in materials, a type of mechanical seal. In building construction sealant is sometimes synonymous with caulk and also serve the purposes of blocking dust, sound and heat transmission. Sealants may be weak or strong, flexible or rigid, permanent or temporary. Sealants are not adhesives but some have adhesive qualities and are called adhesive-sealants or structural sealants.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble. The commercially available adhesive can be organic or inorganic and is deposited on one or both substrate surfaces. Adhesives, especially the well-established SU-8, and benzocyclobutene (BCB), are specialized for MEMS or electronic component production.

A fabric structure is a structure made of fabric, with or without a structural frame made from the weaving of the fabric itself. The technology provides end users a variety of aesthetic free-form building designs. Custom-made structures are engineered and fabricated to meet worldwide structural, flame retardant, weather-resistant, and natural force requirements. Fabric structures are considered a sub-category of tensile structure.

RTV silicone is a type of silicone rubber that cures at room temperature. It is available as a one-component product, or mixed from two components. Manufacturers provide it in a range of hardnesses from very soft to medium—usually from 15 to 40 Shore A. RTV silicones can be cured with a catalyst consisting of either platinum or a tin compound such as dibutyltin dilaurate. Applications include low-temperature over-molding, making molds for reproducing, and lens applications for some optically clear grades. It is also used widely in the automotive industry as an adhesive and sealant, for example to create gaskets in-place.

Liquid optically-clear adhesive (LOCA) is liquid-based bonding technology used in touch panels and display devices to bind the cover lens, plastic, or other optical materials to the main sensor unit or each other. These adhesives improve optical characteristics and durability. LOCA glue is often hardened using ultraviolet light.

The chemistry of pressure-sensitive adhesives describes the chemical science associated with pressure-sensitive adhesives (PSA). PSA tapes and labels have become an important part of everyday life. These rely on adhesive material affixed to a backing such as paper or plastic film.

Titanium adhesive bonding is an engineering process used in the aerospace industry, medical-device manufacture and elsewhere. Titanium alloy is often used in medical and military applications because of its strength, weight, and corrosion resistance characteristics. In implantable medical devices, titanium is used because of its biocompatibility and its passive, stable oxide layer. Also, titanium allergies are rare and in those cases mitigations like Parylene coating are used. In the aerospace industry titanium is often bonded to save cost, touch times, and the need for mechanical fasteners. In the past, Russian submarines' hulls were completely made of titanium because the non-magnetic nature of the material went undetected by the defense technology at that time. Bonding adhesive to titanium requires preparing the surface beforehand, and there is not a single solution for all applications. For example, etchant and chemical methods are not biocompatible and cannot be employed when the device will come into contact with blood and tissue. Mechanical surface roughness techniques like sanding and laser roughening may make the surface brittle and create micro-hardness regions that would not be suitable for cyclic loading found in military applications. Air oxidation at high temperatures will produce a crystalline oxide layer at a lower investment cost, but the increased temperatures can deform precision parts. The type of adhesive, thermosetting or thermoplastic, and curing methods are also factors in titanium bonding because of the adhesive's interaction with the treated oxide layer. Surface treatments can also be combined. For example, a grit blast process can be followed by a chemical etch and a primer application.

<span class="mw-page-title-main">Aluminium joining</span>

Aluminium alloys are often used due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminium including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can be performed to provide means for difficult-to-join assemblies and to reduce certain process limitations.

Adhesive bonding is a process by which two members of equal or dissimilar composition are joined. It is used in place of, or to complement other joining methods such mechanical fasting by the use nails, rivets, screws or bolts and many welding processes. The use of adhesives provides many advantages over welding and mechanical fastening in steel construction; however, many challenges still exist that have made the use of adhesives in structural steel components very limited.

References

  1. Mazza, Paul Peter Anthony; Martini, Fabio; Sala, Benedetto (2006). "A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed". Journal of Archaeological Science. 33 (9): 1310–1318. Bibcode:2006JArSc..33.1310M. doi:10.1016/j.jas.2006.01.006.
  2. Horst Stepanski: Spot welding adhesives in the automotive industry. In: Adhesion: Adhesive and Sealants. 5/2010 and 6/2010. Vieweg + Teubner - Springer Trade Media, Wiesbaden 2010.
  3. Li, Meiqi; Zhang, Ling; Li, Xiaofei; Wang, Ruitao; Wu, Xiaofeng; Zhang, Donghai; Chen, Yunfa (2023-06-01). "Improvements of adhesion strength of water-based epoxy resin on carbon fiber reinforced polymer (CFRP) composites via building surface roughness using modified silica particles". Composites Part A: Applied Science and Manufacturing. 169: 107511. doi:10.1016/j.compositesa.2023.107511. ISSN   1359-835X.
  4. Henning Gleich, Andreas Hartwig, Hartwig Lohse: Why pretreatment is so important. In: Adhesion: Adhesives and Sealants. No. 9/2016. Springer Vieweg, Wiesbaden, p. 34 ff.
  5. DIN 2304-1: 2016 Adhesive Bonding Technology - Quality Requirements for Bonding Processes - Part: 1: Bonding Process Chain. Beuth Verlag, Berlin 2016.
  6. Wiemer, M.; Jia, C.; Töpper, M.; Hauck, K. (2006). "Wafer Bonding with BCB and SU-8 for MEMS Packaging". 2006 1st Electronic Systemintegration Technology Conference. Electronics Systemintegration Technology Conference. Vol. 1. pp. 1401–1405. doi:10.1109/ESTC.2006.280194. ISBN   1-4244-0552-1. S2CID   41121651.
  7. Wolffenbuttel, R. F. (1997). "Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond". Sensors and Actuators A: Physical. 62 (1–3): 680–686. doi:10.1016/S0924-4247(97)01550-1.
  8. Reuter, D.; Frömel, J.; Schwenzer, G.; Bertz, A.; Gessner, T. (October 2003). "Selektives Niedertemperaturbonden mit SU-8 für Wafer-Level-Verkappung von mikromechanischen Strukturen". In W. Dötzel (ed.). 6. Chemnitzer Fachtagung Mikromechanik & Mikroelektronik. Vol. 6. Technische Universität Chemnitz. pp. 90–94.
  9. Adhesion: Adhesives and Sealants. No. 7-8 / 2017. Springer Vieweg, Wiesbaden, p. 47.