Clinching

Last updated
Clinching phases G5151Clinching Phases from Lambiase "Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions".png
Clinching phases

In metalworking, clinching or press-joining is a bulk sheet metal forming process aimed at joining thin metal sheets without additional components, using special tools to plastically form an interlock between two or more sheets. The process is generally performed at room temperature, but in some special cases the sheets can be pre-heated to improve the material ductility and thereby avoid the formation of cracks during the process. Clinching is characterized by a series of advantages over competitive technologies: [1]

Contents

Tools

Because the process involves relatively low forces (ranging from 5 to 50 kN depending on the material to join, type of tools and sheet thicknesses), clinching generally involves reduced size (often portable) machines. The tools typically consist of a punch and a die. Different tools have been developed so far, which can be classified in round and rectangular tools. Round clinching tools include: fixed grooved dies, split dies (with 2–4 movable sectors) and flat dies. Such tools produce round joints which show almost identical mechanical behaviors in all plane directions. When round tools are adopted, the integrity of the sheet in the joint must be guaranteed in order to preserve a good mechanical behavior of the joints.

Clinching dies Clinching Dies from Lambiase - "Mechanical behaviour of polymer-metal hybrid joints produced by clinching with different types of dies".png
Clinching dies

On the other hand, rectangular clinched joints exhibit behaviors which depend on the loading direction and both sheets are intentionally sheared along the "long direction" in order to produce the interlock. The choice of the tools is highly influenced by:

In addition, the choice of the clinching tools highly affects the joining strength and the absorbed energy of a clinched connection other than the joining force. Rectangular tools, for example, require lower joining forces than round tools since the material shearing, while among the round clinching tools split dies require the minimum joining force and the largest interlock. [1]

One benefit of clinching is the capability to join prepainted sheet metal commonly used in the appliance industry without damaging the painted surface. Clinching is an important means of fastening aluminum panels, such as hoods and decklids, in the automotive industry, due to the difficulty of spot welding of aluminum. [1]

Main advantages as compared to welding

Clinching is used primarily in the automotive, appliance and electronic industries, where it often replaces spot welding. Clinching does not require electricity or cooling of the electrodes commonly associated with spot welding. Being a mechanical joining process, clinching can be used to join materials showing no electrical conductivity such as polymers [2] [3] or plastic-metal composites. [1] In addition, it does not require a substrate preparation such as pre-cleaning of surfaces which is required for welding processes. This fact contributes to reduce the joining costs and the environmental impact (since chemical cleaning is not required). Clinching does not generate sparks or fumes. The strength of a clinched joint can be tested non-destructively using a simple measuring instrument to measure the remaining thickness at the bottom of the joint, of the diameter of the produced button depending on the type of tools employed. Life expectancy for clinching tools is in the hundreds of thousands of cycles, making it an economical process. Clinched connections performed on aluminum sheets have higher fatigue life as compared to spot welding. [1] [4]

Main advantages as compared to adhesive joining

Clinching does not require a pre-cleaning of the surfaces, which is needed before applying adhesives. Clinching is almost an instant joining process (the required joining time is lower than a second) while adhesive joining often requires a much longer time mainly owing to the curing of the joint (up to many hours). Clinched joints are less affected by environmental agents and effect of aging.

Main limitations

Because it is based on the plastic deformation of the sheets, clinching is limited by the sheet material formability (ductility). Metal ductility increases with temperature, so heat assisted clinching processes have been developed, extending the clinching "joinability". Increasing the joining temperature reduces the material's yield stress, so that less joining force is required. Different heating systems are used to heat the sheets before clinching:

Prolonged heating can increase the grain size or cause metallurgical changes in alloys, which can alter the mechanical behavior of the material at the joint site. [5]

Clinching: Riveting without rivets TOX Pressotechnik Clinching.gif
Clinching: Riveting without rivets

Materials

Clinching has been widely employed for joining ductile metals, including the following:

It has recently extended to other metals, such as:

It has also extended to non-metallic materials, such as:

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Ultrasonic welding</span> Welding process

Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When used to join metals, the temperature stays well below the melting point of the involved materials, preventing any unwanted properties which may arise from high temperature exposure of the metal.

A cermet is a composite material composed of ceramic and metal materials.

<span class="mw-page-title-main">Extrusion</span> Process of pushing material through a die to create long symmetrical-shaped objects

Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex cross-sections; and to work materials that are brittle, because the material encounters only compressive and shear stresses. It also creates excellent surface finish and gives considerable freedom of form in the design process.

Friction welding (FWR) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Because no melting occurs, friction welding is not a fusion welding process, but a solid-state welding technique more like forge welding. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

<span class="mw-page-title-main">Friction stir welding</span> Using a spinning tool to mix metal workpieces together at the joint, without melting them

Friction stir welding (FSW) is a solid-state joining process that uses a non-consumable tool to join two facing workpieces without melting the workpiece material. Heat is generated by friction between the rotating tool and the workpiece material, which leads to a softened region near the FSW tool. While the tool is traversed along the joint line, it mechanically intermixes the two pieces of metal, and forges the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or dough. It is primarily used on wrought or extruded aluminium and particularly for structures which need very high weld strength. FSW is capable of joining aluminium alloys, copper alloys, titanium alloys, mild steel, stainless steel and magnesium alloys. More recently, it was successfully used in welding of polymers. In addition, joining of dissimilar metals, such as aluminium to magnesium alloys, has been recently achieved by FSW. Application of FSW can be found in modern shipbuilding, trains, and aerospace applications.

<span class="mw-page-title-main">Hydroforming</span> Method of shaping metal through pressurized water

Hydroforming is a cost-effective way of shaping ductile metals such as aluminium, brass, low alloy steel, and stainless steel into lightweight, structurally stiff and strong pieces. One of the largest applications of hydroforming is the automotive industry, which makes use of the complex shapes made possible by hydroforming to produce stronger, lighter, and more rigid unibody structures for vehicles. This technique is particularly popular with the high-end sports car industry and is also frequently employed in the shaping of aluminium tubes for bicycle frames.

<span class="mw-page-title-main">Magnesium alloy</span>

Magnesium alloys are mixtures of magnesium with other metals, often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminium, copper and steel; therefore, magnesium alloys are typically used as cast alloys, but research of wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern automobiles and have been used in some high-performance vehicles; die-cast magnesium is also used for camera bodies and components in lenses.

Aluminium carbide, chemical formula Al4C3, is a carbide of aluminium. It has the appearance of pale yellow to brown crystals. It is stable up to 1400 °C. It decomposes in water with the production of methane.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

6061 is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

<span class="mw-page-title-main">Friction stir processing</span>

Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into the workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. The precursor of this technique, friction stir welding, is used to join multiple pieces of metal without creating the heat affected zone typical of fusion welding.

Cladding is the bonding together of dissimilar metals. It is different from fusion welding or gluing as a method to fasten the metals together. Cladding is often achieved by extruding two metals through a die as well as pressing or rolling sheets together under high pressure.

6082 aluminium alloy is an alloy in the wrought aluminium-magnesium-silicon family. It is one of the more popular alloys in its series, although it is not strongly featured in ASTM standards. It is typically formed by extrusion and rolling, but as a wrought alloy it is not used in casting. It can also be forged and clad, but that is not common practice with this alloy. It cannot be work hardened, but is commonly heat treated to produce tempers with a higher strength but lower ductility.

<span class="mw-page-title-main">Aluminium joining</span>

Aluminium alloys are often used due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminium including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can be performed to provide means for difficult-to-join assemblies and to reduce certain process limitations.

<span class="mw-page-title-main">Dissimilar friction stir welding</span>

Dissimilar friction stir welding (DFSW) is the application of friction stir welding (FSW), invented in The Welding Institute (TWI) in 1991, to join different base metals including aluminum, copper, steel, titanium, magnesium and other materials. It is based on solid state welding that means there is no melting. DFSW is based on a frictional heat generated by a simple tool in order to soften the materials and stir them together using both tool rotational and tool traverse movements. In the beginning, it is mainly used for joining of aluminum base metals due to existence of solidification defects in joining them by fusion welding methods such as porosity along with thick Intermetallic compounds. DFSW is taken into account as an efficient method to join dissimilar materials in the last decade. There are many advantages for DFSW in compare with other welding methods including low-cost, user-friendly, and easy operation procedure resulting in enormous usages of friction stir welding for dissimilar joints. Welding tool, base materials, backing plate (fixture), and a milling machine are required materials and equipment for DFSW. On the other hand, other welding methods, such as Shielded Metal Arc Welding (SMAW) typically need highly professional operator as well as quite expensive equipment.

Aluminium–magnesium–silicon alloys (AlMgSi) are aluminium alloys—alloys that are mainly made of aluminium—that contain both magnesium and silicon as the most important alloying elements in terms of quantity. Both together account for less than 2 percent by mass. The content of magnesium is greater than that of silicon, otherwise they belong to the aluminum-silicon-magnesium alloys (AlSiMg).

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 He, Xiaocong (2017). "Clinching for sheet materials". Science and Technology of Advanced Materials. 18 (1): 381–405. doi:10.1080/14686996.2017.1320930. PMC   5468947 . PMID   28656065.
  2. 1 2 3 Lambiase, F. (2015). "Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching". The International Journal of Advanced Manufacturing Technology. 80 (9–12): 1995–2006. doi:10.1007/s00170-015-7192-1.
  3. 1 2 Lambiase, F. (2015). "Mechanical behaviour of polymer-metal hybrid joints produced by clinching using different tools". Materials & Design. 87: 606–618. doi: 10.1016/j.matdes.2015.08.037 .
  4. Mori, K.; et al. (2012). "Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting". Materials Processing Technology. 212 (9): 1900–1905. doi:10.1016/j.jmatprotec.2012.04.017.
  5. 1 2 3 4 Lambiase, F. (2015). "Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions". Journal of Materials Processing Technology. 225: 421–422. doi:10.1016/j.jmatprotec.2015.06.022.
  6. 1 2 Lambiase, F.; Di Ilio, A. (2015). "Mechanical clinching of metal–polymer joints". Journal of Materials Processing Technology. 215: 12–19. doi:10.1016/j.jmatprotec.2014.08.006.
  7. Lambiase, F.; Di Ilio, A. (2013). "Finite Element Analysis of Material Flow in Mechanical Clinching with Extensible Dies". Journal of Materials Engineering and Performance. 22 (6): 1629–1636. Bibcode:2013JMEP...22.1629L. doi:10.1007/s11665-012-0451-5.
  8. Lambiase, F. (2012). "Influence of process parameters in mechanical clinching with extensible dies". The International Journal of Advanced Manufacturing Technology. 66 (9–12): 2123–2131. doi:10.1007/s00170-012-4486-4.