Adrenodoxin reductase

Last updated
FDXR
Identifiers
Aliases FDXR , ADXR, Adrenodoxin reductase, ferredoxin reductase, ANOA, ADR
External IDs OMIM: 103270 MGI: 104724 HomoloGene: 3033 GeneCards: FDXR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_007997

RefSeq (protein)

NP_032023

Location (UCSC) Chr 17: 74.86 – 74.87 Mb Chr 11: 115.16 – 115.17 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Adrenodoxin reductase (Enzyme Nomenclature name: adrenodoxin-NADP+ reductase, EC 1.18.1.6), was first isolated from bovine adrenal cortex where it functions as the first enzyme in the mitochondrial P450 systems that catalyze essential steps in steroid hormone biosynthesis. [5] [6] Examination of complete genome sequences revealed that adrenodoxin reductase gene is present in most metazoans and prokaryotes. [7]

Contents

Nomenclature

The name of the enzyme was coined based on its function to reduce a [2Fe-2S] (2 iron, 2 sulfur) electron-transfer protein that was named adrenodoxin. Later, in some studies, the enzyme was also referred to as a "ferredoxin reductase", as adrenodoxin is a ferredoxin. In the human gene nomenclature, the standard name is ferredoxin reductase and the symbol is FDXR, with ADXR specified as a synonym.

The assignment of the name "ferredoxin reductase" has been criticized as a misnomer because determination of the structure of adrenodoxin reductase revealed that it is completely different from that of plant ferredoxin reductase and there is no homology between these two enzymes. [8] [9] [10] With more proteins with a ferroxodin-reducing activity discovered in both families as well as novel families, this enzyme activity is now seen as an example of convergent evolution. [11] [12]

Function

Adrenodoxin reductase is a flavoprotein as it carries a FAD type coenzyme. The enzyme functions as the first electron transfer protein of mitochondrial P450 systems such as P450scc. [6] The FAD coenzyme receives two electrons from NADPH and transfers them one at a time to the electron transfer protein adrenodoxin. [13] Adrenodoxin functions as a mobile shuttle that transfers electrons between ADXR and mitochondrial P450s. [14]

It catalyzes the following reaction:

NADPH + 2 oxidized adrenodoxin —→ 2 reduced adrenodoxin + NADP+ + H+

Gene structure

The cDNA for adrenodoxin reductase was first cloned in 1987. [15] In both bovine and human genomes there is only a single copy of the gene. [15] [16]

Sites of expression

ADXR gene is expressed in all tissues that have mitochondrial P450s. The highest levels of the enzyme are found in the adrenal cortex, granulosa cells of the ovary and leydig cells of the testis that specialize in steroid hormone synthesis. [6] [17] Immmunofluorescent staining shows that enzyme is localized in mitochondria. [18] The enzyme is also expressed in the liver, the kidney and the placenta.

Enzyme structure

Adrenodoxin reductase has two domains that bind NADPH and FAD separately. [7] The FAD and NADP binding sites of the enzyme were predicted by sequence analysis of the enzyme. [19]

While the FAD-binding site has a consensus sequence (Gly-x-Gly-x-x-Gly) that is similar to other Rossmann folds in FAD and NAD binding sites, [20] the NADPH binding site consensus sequence differs from the FAD-binding site by the substitution of an alanine instead of the last Gly (Gly-x-Gly-x-x-Ala). [19] [7] The location of these FAD and NADP binding sites were confirmed by the crystal structure of the enzyme. [10]

Related Research Articles

<span class="mw-page-title-main">Adrenocorticotropic hormone</span> Pituitary hormone

Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol and androgens by the cortex and medulla of the adrenal gland, respectively. ACTH is also related to the circadian rhythm in many organisms.

<span class="mw-page-title-main">Corpus luteum</span> Temporary endocrine structure in female ovaries

The corpus luteum is a temporary endocrine structure in female ovaries involved in the production of relatively high levels of progesterone, and moderate levels of estradiol, and inhibin A. It is the remains of the ovarian follicle that has released a mature ovum during a previous ovulation.

Israel Hanukoglu is a Turkish-born Israeli scientist. He is a full professor of biochemistry and molecular biology at Ariel University and former science and technology adviser to the prime minister of Israel (1996–1999). He is founder of Israel Science and Technology Directory.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide phosphate</span> Chemical compound

Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form of NADP+, the oxidized form. NADP+ is used by all forms of cellular life.

Ferredoxins are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied to the "iron protein" first purified in 1962 by Mortenson, Valentine, and Carnahan from the anaerobic bacterium Clostridium pasteurianum.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

<span class="mw-page-title-main">Flavoprotein</span> Protein family

Flavoproteins are proteins that contain a nucleic acid derivative of riboflavin. These proteins are involved in a wide array of biological processes, including removal of radicals contributing to oxidative stress, photosynthesis, and DNA repair. The flavoproteins are some of the most-studied families of enzymes.

Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.

<span class="mw-page-title-main">Cholesterol side-chain cleavage enzyme</span> Mammalian protein found in Homo sapiens

Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.

<span class="mw-page-title-main">Steroid 11β-hydroxylase</span> Protein found in mammals

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

<span class="mw-page-title-main">Cytochrome P450 reductase</span> Mammalian protein found in Homo sapiens

Cytochrome P450 reductase is a membrane-bound enzyme required for electron transfer from NADPH to cytochrome P450 and other heme proteins including heme oxygenase in the endoplasmic reticulum of the eukaryotic cell.

In enzymology, a ferredoxin-NADP+ reductase (EC 1.18.1.2) abbreviated FNR, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NADPH—hemoprotein reductase</span> Enzyme

In enzymology, a NADPH—hemoprotein reductase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Adrenal ferredoxin</span> Mammalian protein found in Homo sapiens

Adrenal ferredoxin is a protein that in humans is encoded by the FDX1 gene. In addition to the expressed gene at this chromosomal locus (11q22), there are pseudogenes located on chromosomes 20 and 21.

Oxidoreductase NAD-binding domain is an evolutionary conserved protein domain present in a variety of proteins that include, bacterial flavohemoprotein, mammalian NADH-cytochrome b5 reductase, eukaryotic NADPH-cytochrome P450 reductase, nitrate reductase from plants, nitric-oxide synthase, bacterial vanillate demethylase and others.

5β-Reductase, or Δ4-3-oxosteroid 5β-reductase (EC 1.3.1.3, 3-oxo-Δ4-steroid 5β-reductase, androstenedione 5β-reductase, cholestenone 5β-reductase, cortisone 5β-reductase, cortisone Δ4-5β-reductase, steroid 5β-reductase, testosterone 5β-reductase, Δ4-3-ketosteroid 5β-reductase, Δ4-5β-reductase, Δ4-hydrogenase, 4,5β-dihydrocortisone:NADP+ Δ4-oxidoreductase, 3-oxo-5β-steroid:NADP+ Δ4-oxidoreductase) is an enzyme with systematic name 5β-cholestan-3-one:NADP+ 4,5-oxidoreductase. This enzyme catalyses the following chemical reaction

Adrenodoxin-NADP+ reductase (EC 1.18.1.6, adrenodoxin reductase, nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase, ADR, NADPH:adrenal ferredoxin oxidoreductase) is an enzyme with systematic name adrendoxin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Steroidogenic enzyme</span>

Steroidogenic enzymes are enzymes that are involved in steroidogenesis and steroid biosynthesis. They are responsible for the biosynthesis of the steroid hormones, including sex steroids and corticosteroids, as well as neurosteroids, from cholesterol. Steroidogenic enzymes are most highly expressed in classical steroidogenic tissues, such as the testis, ovary, and adrenal cortex, but are also present in other tissues in the body.

<span class="mw-page-title-main">Cytochrome P450 aromatic O-demethylase</span>

Cytochrome P450 aromatic O-demethylase is a bacterial enzyme that catalyzes the demethylation of lignin and various lignols. The net reaction follows the following stoichiometry, illustrated with a generic methoxy arene:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000161513 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000018861 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (December 1966). "Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase". Archives of Biochemistry and Biophysics. 117 (3): 660–673. doi:10.1016/0003-9861(66)90108-1.
  6. 1 2 3 Hanukoglu I (Dec 1992). "Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis". The Journal of Steroid Biochemistry and Molecular Biology. 43 (8): 779–804. doi:10.1016/0960-0760(92)90307-5. PMID   22217824. S2CID   112729.
  7. 1 2 3 Hanukoglu I (2017). "Conservation of the Enzyme-Coenzyme Interfaces in FAD and NADP Binding Adrenodoxin Reductase-A Ubiquitous Enzyme". Journal of Molecular Evolution. 85 (5): 205–218. Bibcode:2017JMolE..85..205H. doi:10.1007/s00239-017-9821-9. PMID   29177972. S2CID   7120148.
  8. Hanukoglu I (1996). "Electron transfer proteins of cytochrome P450 systems". Physiological Functions of Cytochrome P450 in Relation to Structure and Regulation (PDF). pp. 29–55. doi:10.1016/S1569-2558(08)60339-2. ISBN   9780762301133.{{cite book}}: |journal= ignored (help)
  9. Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (Jun 1999). "The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis". Journal of Molecular Biology. 289 (4): 981–90. doi:10.1006/jmbi.1999.2807. PMID   10369776.
  10. 1 2 Ziegler GA, Schulz GE (2000). "Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family". Biochemistry. 39 (36): 10986–95. doi:10.1021/bi000079k. PMID   10998235.
  11. Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (June 2008). "Structural and functional diversity of ferredoxin-NADP(+) reductases". Archives of Biochemistry and Biophysics. 474 (2): 283–91. doi:10.1016/j.abb.2008.02.014. hdl: 2434/41439 . PMID   18307973.
  12. Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015). "NADPH-generating systems in bacteria and archaea". Frontiers in Microbiology. 6: 742. doi: 10.3389/fmicb.2015.00742 . PMC   4518329 . PMID   26284036.
  13. Lambeth JD, Kamin H (Jul 1976). "Adrenodoxin reductase. Properties of the complexes of reduced enzyme with NADP+ and NADPH". The Journal of Biological Chemistry. 251 (14): 4299–306. doi: 10.1016/S0021-9258(17)33296-9 . PMID   6475.
  14. Hanukoglu I, Jefcoate CR (Apr 1980). "Mitochondrial cytochrome P-450scc. Mechanism of electron transport by adrenodoxin" (PDF). The Journal of Biological Chemistry. 255 (7): 3057–61. doi: 10.1016/S0021-9258(19)85851-9 . PMID   6766943.
  15. 1 2 Hanukoglu I, Gutfinger T, Haniu M, Shively JE (Dec 1987). "Isolation of a cDNA for adrenodoxin reductase (ferredoxin-NADP+ reductase). Implications for mitochondrial cytochrome P-450 systems". European Journal of Biochemistry. 169 (3): 449–455. doi: 10.1111/j.1432-1033.1987.tb13632.x . PMID   3691502.
  16. Solish SB, Picado-Leonard J, Morel Y, Kuhn RW, Mohandas TK, Hanukoglu I, Miller WL (Oct 1988). "Human adrenodoxin reductase: two mRNAs encoded by a single gene on chromosome 17cen----q25 are expressed in steroidogenic tissues". Proceedings of the National Academy of Sciences of the United States of America. 85 (19): 7104–7108. Bibcode:1988PNAS...85.7104S. doi: 10.1073/pnas.85.19.7104 . PMC   282132 . PMID   2845396.
  17. Hanukoglu I, Hanukoglu Z (May 1986). "Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation". European Journal of Biochemistry. 157 (1): 27–31. doi: 10.1111/j.1432-1033.1986.tb09633.x . PMID   3011431.
  18. Hanukoglu I, Suh BS, Himmelhoch S, Amsterdam A (October 1990). "Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells". The Journal of Cell Biology. 111 (4): 1373–81. doi:10.1083/jcb.111.4.1373. PMC   2116250 . PMID   2170421.
  19. 1 2 Hanukoglu I, Gutfinger T (Mar 1989). "cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases". European Journal of Biochemistry. 180 (2): 479–84. doi: 10.1111/j.1432-1033.1989.tb14671.x . PMID   2924777.
  20. Hanukoglu I (2015). "Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites". Biochem Mol Biol Educ. 43 (3): 206–209. doi: 10.1002/bmb.20849 . PMID   25704928. S2CID   11857160.

Further reading