Age determination in dinosaurs

Last updated

Age determination in dinosaurs is mainly used to determine the approximate age of a dinosaur when the animal died.

Dinosaur Superorder of reptiles (fossil)

Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic period, between 243 and 233.23 million years ago, although the exact origin and timing of the evolution of dinosaurs is the subject of active research. They became the dominant terrestrial vertebrates after the Triassic–Jurassic extinction event 201 million years ago; their dominance continued through the Jurassic and Cretaceous periods. Reverse genetic engineering and the fossil record both demonstrate that birds are modern feathered dinosaurs, having evolved from earlier theropods during the late Jurassic Period. As such, birds were the only dinosaur lineage to survive the Cretaceous–Paleogene extinction event 66 million years ago. Dinosaurs can therefore be divided into avian dinosaurs, or birds; and non-avian dinosaurs, which are all dinosaurs other than birds. This article deals primarily with non-avian dinosaurs.

Contents

History

Early attempts to estimate the longevity of dinosaurs used allometric scaling principles. Ages were determined by dividing individual mass estimates by rates of growth for similar, extant taxa. For very large individuals, growth rates were extrapolated to dinosaur proportions using regression analysis. The results of these investigations have been extremely variable as they depend on mass estimates and growth rates that are highly at odds with one another.

Allometry

Allometry is the study of the relationship of body size to shape, anatomy, physiology and finally behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

Taxon Group of one or more populations of an organism or organisms which have distinguishing charachterisics in common

In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is not uncommon, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.

For example, longevity estimates for the sauropod Hypselosaurus priscus range from a few decades to several hundred years. [1] However, it has been shown that most dinosaur bones have growth lines that are visible in thin sectioned material viewed under a polarized light source. [2]

<i>Hypselosaurus</i> genus of reptiles (fossil)

Hypselosaurus was a dubious titanosaurian sauropod that lived in southern France during the Late Cretaceous, approximately 70 million years ago in the early Maastrichtian. Hypselosaurus was first described in 1846, but was not formally named until 1869, when Phillip Matheron named it under the binomial Hypselosaurus priscus. The holotype specimen includes a partial hindlimb and a pair of caudal vertebrae, and two eggshell fragments were found alongside these bones. Because of the proximity of these eggshells to the fossil remains, many later authors, including Matheron and Paul Gervais, have assigned several eggs from the same region of France all to Hypselosaurus, although the variation and differences between these eggs suggest that they do not all belong to the same taxon. Hypselosaurus has been found in the same formation as the dromaeosaurids Variraptor and Pyroraptor, the ornithopod Rhabdodon, and the ankylosaurian Rhodanosaurus, as well as intermediate bones from other groups.

Growth lines

Two types of growth lines exist: annuli , and lines of arrested growth (LAGs). [3] Histological examinations have revealed that annuli are composed of thin layers of avascular bone with parallel-aligned bone fibers. The growth line annuli are found compressed between broad vascularized regions of bone with randomly oriented fibrillar patterns, known as zones.

In zoology, an annulus is an external circular ring. Annuli are commonly found in segmented animals such as earthworms and leeches. The bodies of these annelids are externally marked by annuli that are arranged in series with each other.

Lines of arrested growth, similar to annuli, are found between zones are avascular. They are, however, much thinner, and have relatively fewer bone fibers by volume.

Studies on extant vertebrates indicate that the vascularized zones form during moderate to rapid skeletogenesis, and that abrupt metabolic disruptions of bone formation can trigger growth line deposition. [3]

Vertebrate subphylum of chordates

Vertebrates comprise all species of animals within the subphylum Vertebrata. Vertebrates represent the overwhelming majority of the phylum Chordata, with currently about 69,276 species described. Vertebrates include the jawless fishes and jawed vertebrates, which include the cartilaginous fishes and the bony fishes.

Both types of growth lines may be deposited in synchrony with endogenous biorhythms. For example, captive crocodilians exposed to constant temperature, diet, and photoperiod, still exhibit the periodic and cyclical skeletal growth banding of their wild counterparts. [4] Consequently, it is assumed by many paleontologists that the growth lines of dinosaurs reflect annual rhythms, and that they may be used to determine individual ages. However, in the large and long bones of many dinosaurian taxa, resorption of internal and external bone proceeds even as new cortical bone continues to be deposited, so that growth lines deposited early in development may need to be inferred.

Crocodilia order of large reptiles

Crocodilia is an order of mostly large, predatory, semiaquatic archosaurian reptiles, known as crocodilians. They first appeared 95 million years ago in the Late Cretaceous period and are the closest living relatives of birds, as the two groups are the only known survivors of the Archosauria. Members of the order's total group, the clade Pseudosuchia, appeared about 250 million years ago in the Early Triassic period, and diversified during the Mesozoic era. The order Crocodilia includes the true crocodiles, the alligators and caimans, and the gharial and false gharial. Although the term 'crocodiles' is sometimes used to refer to all of these, crocodilians is a less ambiguous vernacular term for members of this group.

Results in dinosaurs

The results of pioneering efforts to age dinosaur fossils using growth ring counts suggest that the longevity of the basal ceratopsian Psittacosaurus mongoliensis was 10 or 11 years. [5] The prosauropod Massospondylus carinatus 15 years of age, [6] the sauropod Bothriospondylus madagascariensis 43 years, [7] the coelophysoid Megapnosaurus rhodesiensis 7 years, [6] and the maniraptor Troodon formosus 3-5 years of age respectively. [8] These data are being used in conjunction with mass estimated in order to infer the metabolic status and growth rates of dinosaurs.

Related Research Articles

<i>Apatosaurus</i> Genus of reptiles (fossil)

Apatosaurus is a genus of herbivorous sauropod dinosaur that lived in North America during the Late Jurassic period. Othniel Charles Marsh described and named the first-known species, A. ajax, in 1877, and a second species, A. louisae, was discovered and named by William H. Holland in 1916. Apatosaurus lived about 152 to 151 million years ago (mya), during the late Kimmeridgian to early Tithonian age, and are now known from fossils in the Morrison Formation of modern-day Colorado, Oklahoma, New Mexico, Wyoming, and Utah in the United States. Apatosaurus had an average length of 21–22.8 m (69–75 ft), and an average mass of 16.4–22.4 t. A few specimens indicate a maximum length of 11–30% greater than average and a mass of 32.7–72.6 t.

<i>Troodon</i> genus of reptiles (fossil)

Troodon is a dubious genus of relatively small, bird-like dinosaurs known definitively from the Campanian age of the Cretaceous period. It includes at least one species, Troodon formosus, known from Montana. Discovered in October 1855, T. formosus was among the first dinosaurs found in North America, although it was thought to be a lizard until 1877. Several well-known troodontid specimens from the Dinosaur Park Formation in Alberta were once believed to be members of this genus. However, recent analyses in 2017 have found the genus to be undiagnostic and referred some of these specimens to the genus Stenonychosaurus and others to the newly created genus Latenivenatrix.

<i>Argentinosaurus</i> Genus of titanosaurian sauropod dinosaur

Argentinosaurus is a genus of titanosaur sauropod dinosaur first discovered by Guillermo Heredia in Argentina. The generic name refers to the country in which it was discovered. The dinosaur lived on the then-island continent of South America somewhere between 97 and 93.5 million years ago, during the Late Cretaceous Period. It is among the largest known dinosaurs.

Sauropoda infraorder of reptiles (fossil)

Sauropoda, or the sauropods, are a clade of saurischian ("lizard-hipped") dinosaurs. They had very long necks, long tails, small heads, and four thick, pillar-like legs. They are notable for the enormous sizes attained by some species, and the group includes the largest animals to have ever lived on land. Well-known genera include Brachiosaurus, Diplodocus, Apatosaurus and Brontosaurus.

<i>Stenonychosaurus</i> genus of reptiles (fossil)

Stenonychosaurus is a genus of troodontid dinosaur from the Late Cretaceous Dinosaur Park Formation of Alberta, Canada, as well as possibly the Two Medicine Formation. The type and only species, S. inequalis, was named by C.M. Sternberg in 1932, based on a foot, fragments of a hand, and some caudal vertebrae from the Late Cretaceous of Alberta. S. inequalis was reassigned in 1987 by Phil Currie to the genus Troodon, which was reverted by the recognition of Stenonychosaurus as a separate genus from the dubious Troodon in 2017 by Evans et al. and also later in the same year by Van der Reest and Currie.

<i>Plateosaurus</i> genus of reptiles (fossil)

Plateosaurus is a genus of plateosaurid dinosaur that lived during the Late Triassic period, around 214 to 204 million years ago, in what is now Central and Northern Europe and Greenland, North America. Plateosaurus is a basal (early) sauropodomorph dinosaur, a so-called "prosauropod". As of 2011, two species are recognised: the type species P. engelhardti from the late Norian and Rhaetian, and the slightly earlier P. gracilis from the lower Norian. However, others have been assigned in the past, and there is no broad consensus on the species taxonomy of plateosaurid dinosaurs. Similarly, there are a plethora of synonyms at the genus level.

<i>Saurornithoides</i> genus of reptiles (fossil)

Saurornithoides is a genus of troodontid maniraptoran dinosaur, which lived during the Late Cretaceous period. These creatures were predators, which could run fast on their hind legs and had excellent sight and hearing. The name is derived from the Greek stems saur~ (lizard), ornith~ (bird) and eides (form), referring to its bird-like skull.

<i>Psittacosaurus</i> Ceratopsian dinosaur genus from Early Cretaceous Asia

Psittacosaurus is a genus of extinct ceratopsian dinosaur from the Early Cretaceous of what is now Asia, existing between 126 and 101 million years ago. It is notable for being the most species-rich dinosaur genus. Up to 11 species are known, from across Mongolia, Siberia, China, and possibly Thailand. The species of Psittacosaurus were obligate bipeds at adulthood, with a high skull and a robust beak. One individual was found preserved with long filaments on the tail, similar to those of Tianyulong, and scales across the rest of the animal. Psittacosaurus probably had complex behaviours, based on the proportions and relative size of the brain. It may have been active for short periods of time during the day and night, and had well-developed senses of smell and vision.

<i>Antarctosaurus</i> genus of reptiles (fossil)

Antarctosaurus is a genus of titanosaurian sauropod dinosaur from the Late Cretaceous Period of what is now South America. The type species, Antarctosaurus wichmannianus, and a second species, Antarctosaurus giganteus, were described by prolific German paleontologist Friedrich von Huene in 1929. Three additional species of Antarctosaurus have been named since then but later studies have considered them dubious or unlikely to pertain to the genus.

<i>Magyarosaurus</i> genus of reptiles (fossil)

Magyarosaurus is a genus of dwarf sauropod dinosaur from late Cretaceous Period in Romania. It is one of the smallest-known adult sauropods, measuring only six meters in length. The type and only certain species is Magyarosaurus dacus. It has been found to be a close relative of Rapetosaurus in the family Saltasauridae in the sauropod clade Titanosauria in a 2005 study.

<i>Opisthocoelicaudia</i> Sauropod dinosaur genus from Late Cretaceous Mongolia

Opisthocoelicaudia is a genus of sauropod dinosaur of the Late Cretaceous Period discovered in the Gobi Desert of Mongolia. The type species is Opisthocoelicaudia skarzynskii. A well-preserved skeleton lacking only the head and neck was unearthed in 1965 by Polish and Mongolian scientists, making Opisthocoelicaudia one of the best known sauropods from the Late Cretaceous. Tooth marks on this skeleton indicate that large carnivorous dinosaurs had fed on the carcass and possibly had carried away the now-missing parts. To date, only two additional, much less complete specimens are known, including a part of a shoulder and a fragmentary tail. A relatively small sauropod, Opisthocoelicaudia measured about 11.4 metres (37 ft) in length. Like other sauropods, it would have been characterised by a small head sitting on a very long neck and a barrel shaped trunk carried by four column-like legs. The name Opisthocoelicaudia means "posterior cavity tail", alluding to the unusual, opisthocoel condition of the anterior tail vertebrae that were concave on their posterior sides. This and other skeletal features lead researchers to propose that Opisthocoelicaudia was able to rear on its hindlegs.

Kristina A. Curry Rogers is a vertebrate paleontologist and a Professor in geology and biology at Macalester College. She holds a B.Sc. in Biology from Montana State University, and a M.Sc. Ph.D. in Anatomical Science from the State University of New York at Stony Brook. Her work focuses on questions of dinosaur biology, bone histology, growth, and evolution, especially the Titanosauria, on which she wrote her doctoral dissertation. Together with Catherine Forster, Associate Professor and her teacher at Stony Brook, she discovered and described Rapetosaurus, the most complete Cretaceous sauropod and titanosaur found to date.

<i>Patagosaurus</i> genus of reptiles (fossil)

Patagosaurus is an extinct genus of eusauropodan dinosaur from the Middle Jurassic of Patagonia, Argentina. It was first found in deposits of the Cañadon Asfalto Formation, which date from around 165 to 161 million years ago. Although originally twelve specimens were assigned to the taxon, at least one of them may belong to a different genus. Patagosaurus probably lived alongside genera such as Piatnitzkysaurus, Condorraptor, Volkheimeria and another unnamed sauropod.

<i>Europasaurus</i> genus of reptiles (fossil)

Europasaurus is a basal macronarian sauropod, a form of quadrupedal herbivorous dinosaur. It lived during the Late Jurassic of northern Germany, and has been identified as an example of insular dwarfism resulting from the isolation of a sauropod population on an island within the Lower Saxony basin.

The physiology of dinosaurs has historically been a controversial subject, particularly their thermoregulation. Recently, many new lines of evidence have been brought to bear on dinosaur physiology generally, including not only metabolic systems and thermoregulation, but on respiratory and cardiovascular systems as well.

Mamenchisauridae family of reptiles (fossil)

Mamenchisauridae is a family of sauropod dinosaurs known from the Jurassic and Early Cretaceous of Asia and Africa.

<i>Miragaia longicollum</i> genus of reptiles (fossil)

Miragaia is a long-necked stegosaurid dinosaur. Its fossils have been found in Upper Jurassic rocks in Portugal. Miragaia has the longest neck known for any stegosaurian, which included at least seventeen vertebrae.

Timeline of troodontid research

This timeline of troodontid research is a chronological listing of events in the history of paleontology focused on the troodontids, a group of bird-like theropod dinosaurs including animals like Troodon. Troodontid remains were among the first dinosaur fossils to be reported from North America after paleontologists began performing research on the continent, specifically the genus Troodon itself. Since the type specimen of this genus was only a tooth and Troodon teeth are unusually similar to those of the unrelated thick-headed pachycephalosaurs, Troodon and its relatives would be embroiled in taxonomic confusion for over a century. Troodon was finally recognized as distinct from the pachycephalosaurs by Phil Currie in 1987. By that time many other species now recognized as troodontid had been discovered but had been classified in the family Saurornithoididae. Since these families were the same but the Troodontidae named first, it carries scientific legitimacy.

<i>Daliansaurus</i> genus of reptiles (fossil)

Daliansaurus is a genus of small troodontid theropod dinosaur, measuring approximately 1 metre long, from the Early Cretaceous of China. It contains a single species, D. liaoningensis, named in 2017 by Shen and colleagues from a nearly complete skeleton preserved in three dimensions. Daliansaurus is unusual in possessing an enlarged claw on the fourth digit of the foot, in addition to the "sickle claw" found on the second digit of the feet of most paravians. It also has long metatarsal bones, and apparently possesses bird-like uncinate processes. In the Lujiatun Beds of the Yixian Formation, a volcanically-influenced region with a cold climate, Daliansaurus lived alongside its closest relatives - Sinovenator, Sinusonasus, and Mei, with which it forms the group Sinovenatorinae.

Dinosaur tooth

Dinosaur dental histology is the study of the dental microanatomy of dinosaur teeth. This involves the creation of histology thin sections from fossils, which are then examined through microscopy.

References

  1. Case, T. J. (1978). Speculations on the growth rate and reproduction of some dinosaurs. Paleobiology4, 320-328.
  2. Reid, R. E. H. (1990). Zonal "growth rings" in dinosaurs. Mod. Geol.15, 19-48.
  3. 1 2 Francillion-Viellot H., et al., (1990). Microstructure and mineralization of vertebrate skeletal tissues. In Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends (J. G. Carter, Ed.). Vol. 1, pp. 471-530. Van Nostrand-Reinhold, New York.
  4. Castanet et al. (1993). Bone and individual aging. In Bone (B. K. Hall, Ed.), pp. 245-283. CRC Press, Boca Raton, Fl.
  5. Erickson, G. M. and Tumanova, T. A. (2000). Growth curve and life history attributes of Psittacosaurus mongoliensis (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society. 130:551-566.
  6. 1 2 Chinsamy, A. (1994). Dinosaur bone histology: Implications and inferences. In Dino Fest (G. D. Rosenburg and D. L. Wolberg, Eds.), pp. 213-227. The Paleontological Society, Department of Geological Sciences, Univ. of Tennessee, Knoxville.
  7. Ricqles et al., (1983)In Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends (J. G. Carter, Ed.). Vol. 1, pp. 471-530. Van Nostrand-Reinhold, New York.
  8. Varricchio, D. V. (1993). Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. J. Vertebr. Paleontol.13, 99-104.