Aimsun Live

Last updated
Aimsun Live
Developer(s) Aimsun
Stable release
Aimsun Live / 2008 (2008)
Type Traffic forecasting, transportation forecasting, road traffic control, congestion planning
License Software license agreement
Website aimsun.com

Aimsun Live is a traffic forecasting solution based on simulation, developed and marketed by Aimsun.

Contents

Traffic control centers use Aimsun Live (formerly Aimsun Online) to make real-time decisions about the management of a road network. It is used to dynamically forecast future traffic conditions based on the current state of the network and to evaluate incident response or traffic management strategies.

Aimsun Live connects with the traffic control center, continuously processing live field data. By combining these live traffic data feeds and high-speed simulations with the emulation of congestion mitigation strategies, Aimsun Live can accurately forecast the future network flow patterns that will result from a particular traffic management or information provision strategy. From a single highway corridor to an entire major city, Aimsun Live can simulate vehicle movement within the road network.

Aimsun Live was launched in 2008 and is now fully deployed on Interstate 15 in San Diego, Grand Lyon in France, and other locations worldwide.

Features

Aimsun Live uses live traffic data feeds and simulations to forecast future traffic conditions for large Urban areas and regional networks.

Real-time analysis

Aimsun Live analyzes real-time inputs from disparate sources of information, such as field traffic controllers, detectors, incident reports and live data feeds from key intersections.

Calibrated model retrieval

Using up-to-date field data, Aimsun Live identifies, retrieves, and loads a travel demand matrix for the road network being managed. It finds the closest match between the data received in real time and several demand patterns stored in a database. The demand pattern database is created in a prior step by carrying out an analysis of historical data.

Real-time simulation

This step involves the dynamic (mesoscopic or microscopic) simulation of one or more scenarios in real time. Each scenario is simulated on a dedicated computer. The simulations produce dynamic forecasts of traffic conditions at a detailed, local level for the next 30–60 minutes. Each simulation considers a concrete set of actions that might be applied in order to improve the network situation. One of the scenarios always corresponds to the ‘do nothing' case.

The area included in the simulation model depends on the type of network being managed. It is typically defined using equilibrium assignment techniques, which evaluate at a high level the impact of local but significant capacity changes on the rest of the network. The objective is to exclude areas that are unlikely to be affected by incidents or responses to those incidents.

Simulations typically last 1–3 minutes [1] depending on hardware specifications, network size and level of congestion (number of vehicles). These simulations are run in 'batch mode' (without animation in 2D or 3D) in order to improve performance.

Online visualisation

Response information is presented visually online to provide support for operational decision making. Traffic control operators are provided with quick snapshots of predicted traffic flow and performance indicators for different control alternatives.

Other features

Practical uses

Project examples

Aimsun Live is or has been used to inform operational decisions for:

Related Research Articles

<span class="mw-page-title-main">Transport economics</span> Branch of economics

Transport economics is a branch of economics founded in 1959 by American economist John R. Meyer that deals with the allocation of resources within the transport sector. It has strong links to civil engineering. Transport economics differs from some other branches of economics in that the assumption of a spaceless, instantaneous economy does not hold. People and goods flow over networks at certain speeds. Demands peak. Advance ticket purchase is often induced by lower fares. The networks themselves may or may not be competitive. A single trip may require the bundling of services provided by several firms, agencies and modes.

<span class="mw-page-title-main">Intelligent transportation system</span> Advanced application

An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks.

<span class="mw-page-title-main">Congestion pricing</span> System of surcharging users of public goods that are subject to congestion

Congestion pricing or congestion charges is a system of surcharging users of public goods that are subject to congestion through excess demand, such as through higher peak charges for use of bus services, electricity, metros, railways, telephones, and road pricing to reduce traffic congestion; airlines and shipping companies may be charged higher fees for slots at airports and through canals at busy times. Advocates claim this pricing strategy regulates demand, making it possible to manage congestion without increasing supply.

<span class="mw-page-title-main">Transportation demand management</span> Policies to reduce transportation demands

Transportation demand management or travel demand management (TDM) is the application of strategies and policies to increase the efficiency of transportation systems, that reduce travel demand, or to redistribute this demand in space or in time.

<span class="mw-page-title-main">The Big Move</span> 2008 regional transportation plan for the Greater Toronto Area

The Big Move is the regional transportation plan (RTP) published by Metrolinx for the Greater Toronto and Hamilton Area (GTHA) in Ontario, Canada. It makes specific recommendations for transit projects, resulting from seven "green papers" and two "white papers" released for public discussion. A draft RTP was released alongside draft investment strategy in September 2008. After a series of stakeholder consultations and public meetings, the final RTP was approved and published by Metrolinx on 28 November 2008.

The Sydney Coordinated Adaptive Traffic System, abbreviated SCATS, is an intelligent transportation system that manages the dynamic timing of signal phases at traffic signals, meaning that it tries to find the best phasing for a traffic situation. SCATS is based on the automatic plan selection from a library in response to the data derived from loop detectors or other road traffic sensors.

Traffic estimation and prediction systems (TrEPS) have the potential to improve traffic conditions and reduce travel delays by facilitating better utilization of available capacity. These systems exploit currently available and emerging computer, communication, and control technologies to monitor, manage, and control the transportation system. They also provide various levels of traffic information and trip advisory to system users, including many ITS service providers, so that travelers can make timely and informed travel decisions.

<span class="mw-page-title-main">Transportation forecasting</span>

Transportation forecasting is the attempt of estimating the number of vehicles or people that will use a specific transportation facility in the future. For instance, a forecast may estimate the number of vehicles on a planned road or bridge, the ridership on a railway line, the number of passengers visiting an airport, or the number of ships calling on a seaport. Traffic forecasting begins with the collection of data on current traffic. This traffic data is combined with other known data, such as population, employment, trip rates, travel costs, etc., to develop a traffic demand model for the current situation. Feeding it with predicted data for population, employment, etc. results in estimates of future traffic, typically estimated for each segment of the transportation infrastructure in question, e.g., for each roadway segment or railway station. The current technologies facilitate the access to dynamic data, big data, etc., providing the opportunity to develop new algorithms to improve greatly the predictability and accuracy of the current estimations.

TransModeler is the name of a based traffic simulation platform for doing wide-area traffic planning, traffic management, and emergency evacuation studies that is developed by Caliper Corporation. It can animate the behavior of multi-modal traffic systems to show the flow of vehicles, the operation of traffic signals, and the overall performance of the transportation network.

<span class="mw-page-title-main">PTV VISSIM</span>

PTV Vissim is a microscopic multi-modal traffic flow simulation software package developed by PTV Planung Transport Verkehr AG in Karlsruhe, Germany. The name is derived from "Verkehr In Städten - SIMulationsmodell". PTV Vissim was first developed in 1992 and is today a global market leader.

<span class="mw-page-title-main">Active mobility</span> Unmotorised transport powered by activity

Active mobility, soft mobility, active travel, active transport or active transportation is the transport of people or goods, through non-motorized means, based around human physical activity. The best-known forms of active mobility are walking and cycling, though other modes include running, rowing, skateboarding, kick scooters and roller skates. Due to its prevalence, cycling is sometimes considered separately from the other forms of active mobility.

PTV GmbH is a German company specializing in software and consulting services for traffic and transportation, mobility, and logistics. Their transport planning software, Vision Traffic Suite, and PTV Map & Guide, is a program for route planning, comprise the PTV AG's product portfolio. According to the manufacturer; over 2,000 customers in more than 90 countries use the Vision Traffic Suite in the fields of transport modelling and traffic flow calculation. PTV ranks among the top 1,000 global market leaders in Germany according to Germany's Manager Magazine.

Urban freight distribution is the system and process by which goods are collected, transported, and distributed within urban environments. The urban freight system can include seaports, airports, manufacturing facilities, and warehouse/distribution centers that are connected by a network of railroads, rail yards, pipelines, highways, and roadways that enable goods to get to their destinations.

<span class="mw-page-title-main">Managed lane</span>

A managed lane is a type of highway lane that is operated with a management scheme, such as lane use restrictions or variable tolling, to optimize traffic flow, vehicle throughput, or both. Definitions and goals vary among transport agencies, but managed lanes are generally implemented to achieve an improved operational condition on a highway, such as improving traffic speed and throughput, reducing air pollution, and improving safety. Types of managed lanes include high-occupancy vehicle (HOV) lanes, high-occupancy toll lanes, express toll lanes, reversible lanes, and bus lanes. Most managed lane facilities are located in the United States and Canada, although HOV and bus lanes can be found in many other countries; outside of the US and Canada, many countries use active traffic management that manage all lanes of a highway.

Urban traffic modeling and analysis is part of the advanced traffic intelligent management technologies that has become a crucial sector of Traffic management and control. Its main purpose is to predict congestion states of a specific urban transport network and propose improvements in the traffic network. Researches rely on three different informations. Historical and recent information of a traffic network about its density and flow, a model of the transport network infrastructure and algorithms referring to both spatial and temporal dimensions. The final objective is to provide a better optimization of the traffic infrastructure such as traffic lights. Those optimizations should result into a decrease of the travel times, pollution and fuel consumption.

<span class="mw-page-title-main">Simulation of Urban MObility</span>

Simulation of Urban MObility is an open source, portable, microscopic and continuous multi-modal traffic simulation package designed to handle large networks. SUMO is developed by the German Aerospace Center and community users. It has been freely available as open-source since 2001, and since 2017 it is an Eclipse Foundation project.

Carolina Osorio is a full professor in Decision Sciences at HEC Montreal. Her work is focused on operations research applied to urban transportation.

<span class="mw-page-title-main">Michel Bierlaire</span> Belgian-Swiss mathematician

Michel Bierlaire is a Belgian-Swiss applied mathematician specialized in transportation modeling and optimization. He is a professor at EPFL and the head of the Transport and Mobility Laboratory.

Aimsun is a software company that provides simulation software and services for transportation planning and traffic management.

<span class="mw-page-title-main">Baher Abdulhai</span> Canadian civil engineer, academic

Baher Abdulhai is a Canadian civil engineer, academic, entrepreneur, and researcher. He is a Professor in the Department of Civil Engineering, Director of Intelligent Transportation Systems Centre, and Co-Director of iCity Centre for Automated and Transformative Transportation at the University of Toronto. He is also the CEO and managing director of IntelliCAN Transportation System Inc.

References

  1. 1 2 A Torday; J Barcelo; G Funes; Transport Simulation Systems, ES. "Use of simulation-based forecast for real time traffic management decision support: the case of the Madrid traffic centre". ETC Proceedings. Archived from the original on 2010-05-20.
  2. "UK Research and Innovation NEVFMA". www.gtr.ukri.org/. Retrieved 2020-01-29.
  3. "Florida Department of Transportation". www.cflsmartroads.com. Retrieved 2020-01-29.
  4. "Baustart für DIGI-V: In Wiesbaden werden die Ampeln intelligent | Landeshauptstadt Wiesbaden". www.wiesbaden.de. Retrieved 2020-01-29.
  5. Roads and Maritime Services, N. S. W. "M4 Smart Motorway project". Roads and Maritime Services. Retrieved 2020-01-29.
  6. "I-15 Integrated Corridor Management". Archived from the original on 2019-09-03. Retrieved 2020-01-29.
  7. "San Diego Integrated Corridor Management Demonstrator Project". Transport Simulation Systems. Archived from the original on 2014-02-23. Retrieved 2014-02-12.
  8. "Optimise Citizen Mobility and Freight Management in Urban Environments". European Commission - Cordis. 18 February 2016.

Further reading