Airborne disease

Last updated

Airborne diseases can be spread via respiratory droplets expelled from the mouth and nose. Sneeze.JPG
Airborne diseases can be spread via respiratory droplets expelled from the mouth and nose.

An airborne disease is any disease that is caused by pathogens that can be transmitted through the air. Such diseases include many of considerable importance both in human and veterinary medicine. The relevant pathogens may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, toilet flushing or any activities which generates aerosol particles or droplets. Human airborne diseases do not include conditions caused by air pollution such as Volatile Organic Compounds (VOCs), gases and any airborne particles, though their study and prevention may help inform the science of airborne disease transmission.[ citation needed ]

In biology, a pathogen, in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

Veterinary medicine deals with the diseases of animals, animal welfare, etc.

Veterinary medicine is the branch of medicine that deals with the prevention, diagnosis and treatment of disease, disorder and injury in non-human animals. The scope of veterinary medicine is wide, covering all animal species, both domesticated and wild, with a wide range of conditions which can affect different species.

Aerosol colloid of fine solid particles or liquid droplets, in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog, dust, forest exudates and geyser steam. Examples of anthropogenic aerosols are haze, particulate air pollutants and smoke. The liquid or solid particles have diameters typically <1 μm; larger particles with a significant settling speed make the mixture a suspension, but the distinction is not clear-cut. In general conversation, aerosol usually refers to an aerosol spray that delivers a consumer product from a can or similar container. Other technological applications of aerosols include dispersal of pesticides, medical treatment of respiratory illnesses, and convincing technology. Diseases can also spread by means of small droplets in the breath, also called aerosols.



Airborne diseases include any that are caused via transmission through the air. Many airborne diseases are of great medical importance. The pathogens transmitted may be any kind of microbe, and they may be spread in aerosols, dust or liquids. The aerosols might be generated from sources of infection such as the bodily secretions of an infected animal or person, or biological wastes such as accumulate in lofts, caves, garbage and the like. Such infected aerosols may stay suspended in air currents long enough to travel for considerable distances, though the rate of infection decreases sharply with the distance between the source and the organism infected.

Infection invasion of a host by disease-causing organisms

Infection is the invasion of an organism's body tissues by disease-causing agents, their multiplication, and the reaction of host tissues to the infectious agents and the toxins they produce. Infectious disease, also known as transmissible disease or communicable disease, is illness resulting from an infection.

Airborne pathogens or allergens often cause inflammation in the nose, throat, sinuses and the lungs. This is caused by the inhalation of these pathogens that affect a person's respiratory system or even the rest of the body. Sinus congestion, coughing and sore throats are examples of inflammation of the upper respiratory air way due to these airborne agents. Air pollution plays a significant role in airborne diseases which is linked to asthma. Pollutants are said to influence lung function by increasing air way inflammation. [1]

Inflammation signs of activation of the immune system

Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molecular mediators. The function of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and initiate tissue repair.

Asthma long-term disease involving poor airflow in the lungs

Asthma is a common long-term inflammatory disease of the airways of the lungs. It is characterized by variable and recurring symptoms, reversible airflow obstruction, and bronchospasm. Symptoms include episodes of wheezing, coughing, chest tightness, and shortness of breath. These may occur a few times a day or a few times per week. Depending on the person, they may become worse at night or with exercise.

Many common infections can spread by airborne transmission at least in some cases, including: Anthrax (inhalational), Chickenpox, Influenza, Measles, Smallpox, Cryptococcosis, and Tuberculosis.

Anthrax Infection caused by Bacillus anthracis bacteria

Anthrax is an infection caused by the bacterium Bacillus anthracis. It can occur in four forms: skin, lungs, intestinal, and injection. Symptoms begin between one day and two months after the infection is contracted. The skin form presents with a small blister with surrounding swelling that often turns into a painless ulcer with a black center. The inhalation form presents with fever, chest pain, and shortness of breath. The intestinal form presents with diarrhea which may contain blood, abdominal pains, and nausea and vomiting. The injection form presents with fever and an abscess at the site of drug injection.

Chickenpox Human viral disease

Chickenpox, also known as varicella, is a highly contagious disease caused by the initial infection with varicella zoster virus (VZV). The disease results in a characteristic skin rash that forms small, itchy blisters, which eventually scab over. It usually starts on the chest, back, and face then spreads to the rest of the body. Other symptoms may include fever, tiredness, and headaches. Symptoms usually last five to seven days. Complications may occasionally include pneumonia, inflammation of the brain, and bacterial skin infections. The disease is often more severe in adults than in children. Symptoms begin 10 to 21 days after exposure to the virus.

Influenza infectious disease

Influenza, commonly known as the flu, is an infectious disease caused by an influenza virus. Symptoms can be mild to severe. The most common symptoms include: high fever, runny nose, sore throat, muscle pains, headache, coughing, sneezing, and feeling tired. These symptoms typically begin two days after exposure to the virus and most last less than a week. The cough, however, may last for more than two weeks. In children, there may be diarrhea and vomiting, but these are not common in adults. Diarrhea and vomiting occur more commonly in gastroenteritis, which is an unrelated disease and sometimes inaccurately referred to as "stomach flu" or the "24-hour flu". Complications of influenza may include viral pneumonia, secondary bacterial pneumonia, sinus infections, and worsening of previous health problems such as asthma or heart failure.

Airborne diseases can also affect non-humans. For example, Newcastle disease is an avian disease that affects many types of domestic poultry worldwide which is transmitted via airborne contamination. [2] Often, airborne pathogens or allergens cause inflammation in the nose, throat, sinuses, and the upper airway lungs. Upper airway inflammation causes coughing congestion, and sore throat. This is caused by the inhalation of these pathogens that affect a person's respiratory system or even the rest of the body. Sinus congestion, coughing and sore throats are examples of inflammation of the upper respiratory air way due to these airborne agents.


Airborne disease is transmitted as both small, dry particles, and as larger liquid droplets. [3]


Airborne transmission of disease depends on several physical variables endemic to the infectious particle. Environmental factors influence the efficacy of airborne disease transmission; the most evident environmental conditions are temperature and relative humidity. The sum of all the factors that influence temperature and humidity, either meteorological (outdoor) or human (indoor), as well as other circumstances influencing the spread of the droplets containing the infectious particles, as winds, or human behavior, sum up the factors influencing the transmission of airborne diseases.

UV is harmful to both viruses and bacteria. UV incidence can determine the survival of the infectious particles, so that in those territories with a higher average of sunshine daily hours, and closer to the equator, some particles lose their infectious ability. Infectious particles show an increased survival in the presence of UV light at higher relative humidity levels. It is thought to be due to the protective effect of larger particle sizes, as evaporation would be less at these higher RH levels, showing a protective effect of a thicker water coat. [9]
After isolated events, as tropical storms, has been determined that firstly the quantity of fungal spores is decreased, but a few days later, an exponentially increased number of spores is found, compared to normal conditions. [10]
Nearness to large sources of water as rivers and lakes can be a cause of some outbreaks of airborne diseases, after changes in local watershed. [8] Poor sewage systems are usually found in poor countries, especially in the rural areas, and can determine the proliferation of infectious bacteria, that once infecting animal or humans can be transmitted throughout the air.
Working conditions, can also settle infectious airborne diseases. At indoor environments, temperature and relative humidity are mainly affected by HVAC systems (heating, ventilation and air conditioning). [11] Inadequate ventilation is implicated in the airborne transmission of respiratory viruses. [4] Poor maintenance or defects on those systems can foster the conditions for airborne infections. [12] For instance, a poor maintenance of air conditioning systems, can lead to an outbreak of Legionella (mainly Legionella pneumophila), that will spread among the population of the building (workers), before the finding of the focal point. [13] In hospitals, isolation of patients sick of infectious diseases has to be added as a factor, which is noticeable in poor regions, where lack of resources facilitates the spread of infectious diseases.[ citation needed ]


Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection. [14] Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body. [14]

Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague. [15]

Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. [16] Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. [17] Many public health specialists recommend social distancing to reduce the transmission of airborne infections. [18]

See also

Related Research Articles

Epidemic rapid spread of infectious disease to a large number of people in a given population within a short period of time

An epidemic is the rapid spread of infectious disease to a large number of people in a given population within a short period of time, usually two weeks or less. For example, in meningococcal infections, an attack rate in excess of 15 cases per 100,000 people for two consecutive weeks is considered an epidemic.

Common cold common viral infection of upper respiratory tract

The common cold, also known simply as a cold, is a viral infectious disease of the upper respiratory tract that primarily affects the nose. The throat, sinuses, and larynx may also be affected. Signs and symptoms may appear less than two days after exposure to the virus. These may include coughing, sore throat, runny nose, sneezing, headache, and fever. People usually recover in seven to ten days, but some symptoms may last up to three weeks. Occasionally those with other health problems may develop pneumonia.

Canine distemper dog disease

Canine distemper is a viral disease that affects a wide variety of animal families, including domestic and wild species of dogs, coyotes, foxes, pandas, wolves, ferrets, skunks, raccoons, and large cats, as well as pinnipeds, some primates, and a variety of other species. Animals in the family Felidae, including many species of large cat as well as domestic cats, were long believed to be resistant to canine distemper, until some researchers reported the prevalence of CDV infection in large felids. Both large Felidae and domestic cats are now known to be capable of infection, usually through close housing with dogs or possibly blood transfusion from infected cats, but such infections appear to be self-limiting and largely without symptoms.

Pharyngitis type of upper respiratory tract infection

Pharyngitis is inflammation of the back of the throat, known as the pharynx. It typically results in a sore throat and fever. Other symptoms may include a runny nose, cough, headache, and a hoarse voice. Symptoms usually last 3-5 days. Complications can include sinusitis and acute otitis media. Pharyngitis is a type of upper respiratory tract infection.

In medicine, public health, and biology, transmission is the passing of a pathogen causing communicable disease from an infected host individual or group to a particular individual or group, regardless of whether the other individual was previously infected.

Surgical mask Oro-nasal cover worn by health professionals to reduce spread of airborne pathogens

A surgical mask, also known as a procedure mask, is intended to be worn by health professionals during surgery and during nursing to catch the bacteria shed in liquid droplets and aerosols from the wearer's mouth and nose. They are not designed to protect the wearer from inhaling airborne bacteria or virus particles and are less effective than respirators, such as N95 or NIOSH masks, which provide better protection due to their material, shape and tight seal. Surgical masks are popularly worn by the general public in East Asian countries to reduce the chance of spreading airborne diseases.

Natural reservoir long-term host of the pathogen of an infectious disease

In infectious disease ecology and epidemiology, a natural reservoir, also known as a disease reservoir or a reservoir of infection, is the population of organisms or the specific environment in which an infectious pathogen naturally lives and reproduces, or upon which the pathogen primarily depends for its survival. A reservoir is usually a living host of a certain species, such as an animal or a plant, inside of which a pathogen survives, often without causing disease for the reservoir itself. By some definitions a reservoir may also be an environment external to an organism, such as a volume of contaminated air or water.

Kennel cough upper respiratory infection affecting dogs

Kennel cough is an upper respiratory infection affecting dogs. There are multiple causative agents, the most common being the bacterium Bordetella bronchiseptica, followed by canine parainfluenza virus, and to a lesser extent canine coronavirus. It is highly contagious; however adult dogs may display immunity to reinfection even under constant exposure. Kennel cough is so named because the infection can spread quickly among dogs in the close quarters of a kennel or animal shelter.

Human parainfluenza viruses

Human parainfluenza viruses (HPIVs) are the viruses that cause human parainfluenza. HPIVs are a paraphyletic group of four distinct single-stranded RNA viruses belonging to the Paramyxoviridae family. These viruses are closely associated with both human and veterinary disease. Virions are approximately 150–250 nm in size and contain negative sense RNA with a genome encompassing about 15,000 nucleotides.

<i>Cryptosporidium</i> genus of apicomplexan parasitic alveolate

Cryptosporidium is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea with or without a persistent cough in both immunocompetent and immunodeficient humans.

Influenza A virus subtype H3N8

H3N8 is a subtype of the species Influenza A virus that is endemic in birds, horses and dogs. In 2011, it was reported to have been found in seals. Cats have been experimentally infected with the virus, leading to clinical signs, shedding of the virus, and infection of other cats.

Bovine herpesvirus 1 (BoHV-1) is a virus of the family Herpesviridae and the subfamily Alphaherpesvirinae, known to cause several diseases worldwide in cattle, including rhinotracheitis, vaginitis, balanoposthitis, abortion, conjunctivitis, and enteritis. BoHV-1 is also a contributing factor in shipping fever, also known as bovine respiratory disease (BRD). It is spread horizontally through sexual contact, artificial insemination, and aerosol transmission and it may also be transmitted vertically across the placenta. BoHV-1 can cause both clinical and subclinical infections, depending on the virulence of the strain. Although these symptoms are mainly non-life-threatening it is an economically important disease as infection may cause a drop in production and affect trade restrictions. Like other herpesviruses, BoHV-1 causes a lifelong latent infection and sporadic shedding of the virus. The sciatic nerve and trigeminal nerve are the sites of latency. A reactivated latent carrier is normally the source of infection in a herd. The clinical signs displayed are dependent on the virulence of the strain. There is a vaccine available which reduces the severity and incidence of disease. Some countries in Europe have successfully eradicated the disease by applying a strict culling policy.

Aerosolization is the process or act of converting some physical substance into the form of particles small and light enough to be carried on the air i.e. into an aerosol.

<i>Mycoplasma gallisepticum</i> species of bacterium

Mycoplasma gallisepticum (MG) is a bacterium belonging to the class Mollicutes and the family Mycoplasmataceae. It is the causative agent of chronic respiratory disease (CRD) in chickens and infectious sinusitis in turkeys, chickens, game birds, pigeons, and passerine birds of all ages.

Influenza prevention involves taking steps that one can use to decrease their chances of contracting flu viruses, such as the Pandemic H1N1/09 virus, responsible for the 2009 flu pandemic.

Transmission-based precautions are additional infection-control precautions in health care, and the latest routine infection prevention and control practices applied for patients who are known or suspected to be infected or colonized with infectious agents, including certain epidemiologically important pathogens. The latter require additional control measures to effectively prevent transmission.

A number of possible health hazards of air travel have been investigated.

A toilet plume is the dispersal of microscopic particles as a result of flushing a toilet. Normal use of a toilet by healthy people is considered unlikely to be a major health risk. There is indirect evidence that specific pathogens such as norovirus or SARS coronavirus could potentially be spread by toilet aerosols, but as of 2015 no direct experimental studies had clearly demonstrated or refuted actual disease transmission from toilet aerosols. It has been hypothesized that dispersal of pathogens may be reduced by closing the toilet lid before flushing, and by using toilets with lower flush energy.


  1. "Airborne diseases". Archived from the original on 28 June 2012. Retrieved 21 May 2013.
  2. Mitchell, Bailey W.; King, Daniel J. (October–December 1994). "Effect of Negative Air Ionization on Airborne Transmission of Newcastle Disease Virus". Avian Diseases. 38 (4): 725–732. doi:10.2307/1592107. JSTOR   1592107.
  3. Siegel JD, Rhinehart E, Jackson M, Chiarello L, Healthcare Infection Control Practices Advisory Committee. "2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings" (PDF). CDC. Retrieved 2019-02-07.
  4. 1 2 Pica N, Bouvier NM (2012). "Environmental Factors Affecting the Transmission of Respiratory Viruses". Curr Opin Virol. 2 (1): 90–5. doi:10.1016/j.coviro.2011.12.003. PMC   3311988 . PMID   22440971.
  5. 1 2 Rodríguez-Rajo FJ, Iglesias I, Jato V (2005). "Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions". Mycol Res. 109 (4): 497–507. CiteSeerX . doi:10.1017/s0953756204001777. PMID   15912938.
  6. Peternel R, Culig J, Hrga I (2004). "Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors". Ann Agric Environ Med. 11 (2): 303–7. PMID   15627341.
  7. Sabariego S, Díaz de la Guardia C, Alba F (May 2000). "The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain)". Int J Biometeorol. 44 (1): 1–5. doi:10.1007/s004840050131. PMID   10879421.
  8. 1 2 Hedlund C, Blomstedt Y, Schumann B (2014). "Association of climatic factors with infectious diseases in the Arctic and subarctic region – a systematic review". Glob Health Action. 7: 24161. doi:10.3402/gha.v7.24161. PMC   4079933 . PMID   24990685.
  9. 1 2 Tang JW (2009). "The effect of environmental parameters on the survival of airborne infectious agents". J R Soc Interface. 6 Suppl 6: S737–46. doi:10.1098/rsif.2009.0227.focus. PMC   2843949 . PMID   19773291.
  10. Khan NN, Wilson BL (2003). "An environmental assessment of mold concentrations and potential mycotoxin exposures in the greater Southeast Texas area". J Environ Sci Health a Tox Hazard Subst Environ Eng. 38 (12): 2759–72. doi:10.1081/ESE-120025829. PMID   14672314.
  11. Fernstrom A, Goldblatt M (2013). "Aerobiology and its role in the transmission of infectious diseases". J Pathog. 2013: 493960. doi:10.1155/2013/493960. PMC   3556854 . PMID   23365758.
  12. "Aerosolization 's Roll in Transmission of Healthcare Acquired Conditions". Archived from the original on 9 June 2015. Retrieved 12 April 2015.
  13. "Legionnaire disease" . Retrieved 12 April 2015.
  14. 1 2 American Academy of Orthopaedic Surgeons (AAOS) (2011). Bloodborne and Airborne Pathogens. Jones & Barlett Publishers. p. 2. ISBN   9781449668273 . Retrieved 21 May 2013.
  15. Laura Ester Ziady; Nico Small (2006). Prevent and Control Infection: Application Made Easy. Juta and Company Ltd. pp. 119–120. ISBN   9780702167904 . Retrieved 21 May 2013.
  16. "Redirect - Vaccines: VPD-VAC/VPD menu page". 2019-02-07.
  17. "Chamber Test Analysis on Eco-RX Inc. Model 400 Air Purifier" (PDF). Retrieved 4 May 2007.
  18. Glass RJ, Glass LM, Beyeler WE, Min HJ (November 2006). "Targeted social distancing design for pandemic influenza". Emerging Infect. Dis. 12 (11): 1671–81. doi:10.3201/eid1211.060255. PMC   3372334 . PMID   17283616.