Airwatt

Last updated

Airwatt or air watt is a unit of measurement that represents the true suction power of vacuum cleaners. It is calculated by multiplying the airflow (in cubic metres per second) by the suction pressure (in pascals). [1] [2] This measurement reflects the energy per unit time of the air flowing through the vacuum's opening, which correlates to the electrical energy (wattage) supplied through the power cable. [3]

Contents

The airwatt is a valuable measurement of vacuum cleaner motor efficiency because it represents the power carried by the fluid flow (in the case of a typical household vacuum, this fluid is air). The power of the airflow is equal to the product of pressure and volumetric flow rate. Unlike electrical power (measured in watts), which includes energy lost as heat due to inefficiencies in the motor, the airwatt directly reflects the actual airflow and suction power. Therefore, two vacuum cleaners with the same airwattage will have essentially the same suction, whereas devices with the same electrical wattage might vary significantly in efficiency, resulting in different airwattage levels.

Definition

The "power in airwatts" (meaning: effective power in watts) is calculated as the product of suction pressure and the air flow rate:

Where is the power in airwatts, is the suction pressure in pascals, and is the air flow rate in cubic metres per second:

Equivalently, in SI base units:


An alternative airwattage formula is from ASTM International (see document ASTM F558 - 13) [4]

Where P is the power in airwatts, F is the rate per minute (denoted cu ft/min or CFM) and S is the suction capacity expressed as a pressure in units of inches of water.

Some manufacturers choose to use the fraction 18.5 rather than the ASTM decimal, leading to a less than 0.25% variation in their calculations.

Where airflow in Cubic Feet per Minute [CFM] is calculated using

airflow = 13.35 × D2 / vacuum

Where D is the diameter of the orifices. [5]

CFM is always given statistically at its maximum which is at a 2-inch (51 mm) opening. Waterlift, on the other hand, is always given at its maximum: a 0-inch opening. When waterlift is at a 0-inch opening, then the flow rate is zero no air is moving, thus the power is also 0 airwatts. So one then needs to analyse the curve created by both flow rate and waterlift as the opening changes from 0 to 2 inches (0 to 51 mm); somewhere along this line the power will attain its maximum.

If the flow rate were given in litres per second (L/s), then the pressure would be in kilopascals (kPa). Thus one watt equals one kilopascal times one litre per second:

The ratio between the Airwatt rating (power produced in the flow) and electrical watts (power from voltage and current) is the efficiency of the vacuum.

Ratings recommendations

Hoover recommends 100 airwatts for upright vacuum cleaners and 220 airwatts for "cylinder" (canister) vacuum cleaners. [6]

Related Research Articles

<span class="mw-page-title-main">Horsepower</span> Unit of power with different values

Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are the imperial horsepower, which is about 745.7 watts, and the metric horsepower, which is approximately 735.5 watts.

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

Power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity.

<span class="mw-page-title-main">Vacuum pump</span> Equipment generating a relative vacuum

A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

<span class="mw-page-title-main">Volt</span> SI derived unit of voltage

The volt is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI).

Specific impulse is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust.

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Vacuum cleaner</span> Device that sucks up dirt from a surface

A vacuum cleaner, also known simply as a vacuum, is a device that uses suction, and often agitation, in order to remove dirt and other debris from carpets and hard floors.

<span class="mw-page-title-main">Pascal (unit)</span> SI derived unit of pressure

The pascal is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m2). It is also equivalent to 10 barye in the CGS system. Common multiple units of the pascal are the hectopascal, which is equal to one millibar, and the kilopascal, which is equal to one centibar.

Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface." The SI unit of sound power is the watt (W). It relates to the power of the sound force on a surface enclosing a sound source, in air.

<span class="mw-page-title-main">Blower door</span>

A blower door is a machine used to perform a building air leakage test. It can also be used to measure airflow between building zones, to test ductwork airtightness and to help physically locate air leakage sites in the building envelope.

<span class="mw-page-title-main">Centrifugal pump</span> Pump used to transport fluids by conversion of rotational kinetic energy

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor. They are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from which it exits.

The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate.

<span class="mw-page-title-main">Hydraulic pump</span> Mechanical power source

A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

<span class="mw-page-title-main">Centrifugal fan</span> Mechanical fan that forces fluid to move radially outward

A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, or squirrel-cage fan. Tiny ones used in computers are sometimes called biscuit blowers. These fans move air from the rotating inlet of the fan to an outlet. They are typically used in ducted applications to either draw air through ductwork/heat exchanger, or push air through similar impellers. Compared to standard axial fans, they can provide similar air movement from a smaller fan package, and overcome higher resistance in air streams.

The air permeability specific surface of a powder material is a single-parameter measurement of the fineness of the powder. The specific surface is derived from the resistance to flow of air through a porous bed of the powder. The SI units are m2·kg−1 or m2·m−3.

<span class="mw-page-title-main">Vacuum airship</span> Hypothetical airship that is evacuated rather than filled with a lighter-than-air gas

A vacuum airship, also known as a vacuum balloon, is a hypothetical airship that is evacuated rather than filled with a lighter-than-air gas such as hydrogen or helium. First proposed by Italian Jesuit priest Francesco Lana de Terzi in 1670, the vacuum balloon would be the ultimate expression of lifting power per volume displaced.

The watt is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution.

<span class="mw-page-title-main">Central vacuum cleaner</span> Type of vacuum cleaner appliance

A central vacuum cleaner is a type of vacuum cleaner appliance installed into a building as a semi-permanent fixture. Central vacuum systems are designed to remove dirt and debris from homes and buildings by sending dirt particles through piping installed inside the walls to a collection container inside a remote utility space. The power unit is a permanent fixture, usually installed in a basement, garage, or storage room, along with the collection container. Inlets are installed in walls throughout the building that attach to power hoses and other central vacuum accessories to remove dust, particles, and small debris from interior rooms. Most power hoses have a power switch located on the handle.

Standard cubic centimeters per minute (SCCM) is a unit used to quantify the flow rate of a fluid. 1 SCCM is identical to 1 cm³STP/min. Another expression of it would be Nml/min. These standard conditions vary according to different regulatory bodies. One example of standard conditions for the calculation of SCCM is = 0 °C and = 1.01 bar and a unity compressibility factor = 1. This example is for the semi-conductor-manufacturing industry.

References

  1. ""Airwatts" applied to carpet extractors". Cleanfax. February 12, 2013.
  2. "Powr-Flite Applies Airwatts to Carpet Extractors". CleanLink.
  3. American Woodworker. United States: Rodale Press. 1998.
  4. "ASTM F558 - 18 Standard Test Method for Measuring Air Performance Characteristics of Vacuum Cleaners" (PDF). www.astm.org. ASTM International. doi:10.1520/F0558-21. Archived from the original (PDF) on December 28, 2023. Retrieved December 27, 2023.
  5. "Ametek/Lamb Electric Technical Series" (PDF). Retrieved 2019-07-20.
  6. "Air Watts | Suction Power Watts vs Air Watts - Hoover". Archived from the original on 2014-01-06. Retrieved 2019-07-20.